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Abstract. A periodic linear graph operator acts on states (functions) defined on the vertices of a
graph equipped with a free translation action. Fourier transform with respect to the translation
group reveals the central spectral objects, Bloch and Fermi varieties. These encode the relation
between the eigenvalues of the translation group and the eigenvalues of the operator. As they
are algebraic varieties, algebraic methods may be used to study the spectrum of the operator.
We establish a framework in which commutative algebra directly comes to bear on the spectral
theory of periodic operators, helping to distinguish their algebraic and analytic aspects. We also
discuss reducibility of the Fermi variety and non-degeneracy of spectral band edges.
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1 Introduction

Periodic operators on graphs serve as “tight-binding” models for the quantum mechanics of electrons in crys-
talline solids. Their translational symmetry and discrete nature make them naturally amenable to analysis
through commutative algebra. By browsing works such as [9, 13, 14, 18, 19], the reader encounters various
aspects of the algebraic nature of these operators and the role of algebra in their spectral analysis. This
article is a systematic algebraic treatment of periodic graph operators that provides a unifying framework
and serves as background material with the hope of benefiting efforts to apply commutative algebra to spec-
tral theory. The article treats only graphs with finite-degree vertices. When reading, it is helpful but not
necessary to have familiarity with periodic operators, whether discrete or differential. We refer the reader
to introductory sections of the references above, plus an overview focusing on differential operators [24].

First, we develop algebraic aspects of the Fourier transform with respect to a discrete translational
symmetry group acting freely on a set of vertices. Upon this, we build the theory of operators that commute
with translational symmetries, which are by definition the periodic ones. Then, half of the article is spent
on the Bloch and Fermi algebraic varieties, which describe the relation between momentum (eigenvalues of
the translation group) and energy (eigenvalues of the operator). The two most salient issues are reducibility
and nondegeneracy, both of which impact the spectral theory of the operator. Throughout, we pay attention
to identifying algebraic versus analytic aspects of the material. A general background on the algebraic and
geometric ideas we use is found in the two books [8, 7] with more specialized background in [6, 38, 39].

2 Zd actions and the Fourier transform

The algebraic manipulations of §2.1 set the framework for viewing discrete periodic operators in the context
of commutative algebra. They illuminate various points of view and elucidate the roles of algebra and of
analysis. Algebraic and analytic points of view of the Fourier transform are discussed in §2.2.

2.1 Algebraic structure

We examine the underlying structure of a set of vertices with a translation group that extends to functions
defined on the vertices.
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2.1.1 Translation of vertices. Let {e1, . . . , ed} be a basis for the group Zd, with a general element denoted

by n = ∑i∈[1,d] niei. A free action of Zd on a set V of “vertices” is denoted by

Zd
×V Ð→ V ∶∶ (n,x) z→ x+̇n, (2.1)

and we will also use the notation x�n ∶= x+̇−n. A free action by Zd is called a group of shifts or translations.
LetW ⊂V be a fundamental domain for the action, that is,W contains one vertex from each Zd orbit. Because
the action is free, each x∈V has a unique presentation as x = y+̇n with y ∈W and n ∈ Zd, giving a bijection

V ←→ W ×Zd
∶∶ y+̇n ←→ (y, n). (2.2)

We assume that W is finite so that the Zd action is co-finite. When ∣W ∣ = 1, this is the natural action of Zd

on itself by addition, x+̇n = x+n. We identify V with the disjoint union of W copies of Zd, and W with the
W copies of 0∈Zd:

V ←→ ⊔
w∈W

Zd
≅ Zd

×W, (2.3)

with Zd acting by addition on each copy of itself.
Concretely, V could be a periodic set of points in Rd generated by a finite set of points W ⊂Rd through

their shifts by d independent vectors {vj ∶ j ∈ [1, d]}. In this situation, the Zd action is actual addition in Rd,

x+̇n ∶= x + ∑
j∈[1,d]

njvj . (2.4)

A tight-binding model for single-layer graphene has ∣W ∣ = 2 with three repeating edges.

W

2.1.2 Translation of functions. The group algebra C[Zd] is the complex vector space having Zd as a
basis, and endowed with the natural multiplication

∑
m

amm ⋅ ∑
n

bnn = ∑
m,n

ambn(m + n) = ∑
ℓ

(∑
m

ambℓ−m)ℓ = ∑
ℓ

(a ∗ b)ℓ ℓ , (2.5)

in which all sums are over Zd and have only finitely many nonzero terms. Identifying ∑ann with the
function n ↦ an identifies C[Zd] with the space F0(Zd) of complex-valued functions on Zd having finite
support. By (2.5) this identifies the group-algebra multiplication in C[Zd] with convolution in F0(Zd).

We often consider a = ∑ann ∈ C[Zd] as acting on b = {bℓ}ℓ ∈ F0(Zd). The restriction of this multiplication
to the group Zd ⊂ C[Zd] is the shift, or translation, action on F0(Zd),

(m ⋅ b)ℓ = bℓ−m, (2.6)

and convolution is a linear combination of shift operators. These actions on F0(Zd) extend to the vector

space F (Zd) = CZd

of all complex-valued functions on Zd. Restricting to square-summable functions is a
unitary representation of Zd on ℓ2(Zd).

This action is carried to F (V) = CV , and the unitary representation is extended to ℓ2(V) by

(n⋅f)(x) = f(x � n). (2.7)

The identification (2.3) gives various ways of viewing F (V) or any sub-vector-space; for example,

ℓ2(V) ≅ ℓ2(Zd
) ⊗CW

≅ ℓ2(Zd,CW
) ≅ ℓ2(Zd

)
W . (2.8)

The shift operator by the generator ej of Zd is also denoted by Sj ,

(Sjf)(x) = f(x � ej). (2.9)
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2.1.3 Formal Fourier transform. The additive group Zd is isomorphic to the multiplicative group of
monomialsM in d indeterminates z = (z1, . . . , zd), and the convenient (for our context) isomorphism is

Zd
←→ M ∶ n ←→ z−n, (2.10)

in which zn = ∏ z
ni

i . Then one has the identifications

F0(Zd
) ≅ C[Zd

] ≅ C[M] = C[z±], (2.11)

with C[z±] the ring of Laurent polynomials in d indeterminates. Therefore we obtain the identifications

F0(V) ≅ F0(Zd
)
W
≅ C[Zd

]
W
≅ C[z±]W , (2.12)

in which the last object is a finitely generated free module over C[z±].
The algebraic isomorphism from F0(Zd) (with convolution) to the ring C[z±] of Laurent polynomials in

d variables is denoted by ,̂
f z→ f̂ = ∑

n∈Zd

f(n)z−n = ∑
n∈Zd

f(−n)zn. (2.13)

This is a formal Fourier transform, sometimes called the (formal) Floquet transform or z-transform. It is
“formal” as z is an indeterminate rather than a variable to be evaluated at a point. The extension of the
Floquet transform to F (Zd) yields f̂ in the module C[[z±]] of formal Laurent series, and one has

f ∈ F (Zd
) has finite support ⇐⇒ f̂ is a Laurent polynomial. (2.14)

To extend this transform to F (V) = CV , we fix a fundamental domain W and identify F (V) with
F (Z,CW ): Consider f ∈ F (V) as a function of (n, y) ∈ Z×W through the unique presentation x = y+̇n; then
as a function of the variable n, the object f(●+̇n) is an element of CW . The formula (2.13) still holds, with
the values of f being vector rather than scalar,

f z→ f̂ = ∑
n∈Zd

f(●+̇n)z−n = ∑
n∈Zd

f(● � n)zn. (2.15)

This is a Laurent series in the indeterminate z with coefficients in CW . One can eliminate the need to fix a
fundamental domain simply by allowing the argument “●” to run over all of V and not just W. This yields
a Laurent series in the indeterminate z with coefficients in F (V),

f̂(z, x) = ∑
n

f(x+̇n)z−n. (2.16)

This is a sum over the Zd-orbit of the point x ∈ V. As the coefficients are just shifts of f , the formal Floquet
transform on F (V) = CV can be written more compactly as

f z→ f̂ = ∑
n∈Zd

n⋅f zn. (2.17)

The advantage of retaining x in the Floquet transform is that the action of n ∈ Zd on f̂(●, z) coincides with

the action of z−n ∈ M on f̂(●, z),

n⋅f̂ = z−nf̂ . (2.18)

2.2 L2 Floquet transform and Fourier inversion

If the Fourier sum (2.13) converges when evaluated at z ∈ (C×)d, the symbols z1, . . . , zd become complex

variables rather than formal algebraic symbols, and f̂(z, x) becomes a function of two arguments.
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2.2.1 Eigenfunctions of the translation group. If (2.13) converges for some z ∈ (C×)d, then the fun-

damental property (2.18) of the Floquet transform says that f̂(z, x), viewed as a function of x ∈ V is an
eigenfunction of the Zd action, with n-dependent eigenvalue equal to the homomorphism

Zd
Ð→ C× ∶∶ n z→ z−n. (2.19)

The property can be written equivalently as

f̂(z, x+̇n) = znf̂(z, x) ∀n ∈ Zd
∀z ∈ (C×)d. (2.20)

Often this direction of the shift (f(x+̇n) instead of f(x�n)) is taken to be the definition of the shift action,
so that zn (instead of z−n) is the eigenvalue of the shift by n∈Zd.

All homomorphisms from Zd to C× form the dual group of characters of Zd. Each character corresponds
to a d-tuple z = (z1, . . . , zd) of nonzero complex numbers, called its weight. Thus the dual group is isomorphic
to the non-compact complex torus (C×)d. The unitary dual group of Zd is the group of homomorphisms from
Zd to the unit circle T⊂C, which is isomorphic to the compact d-dimensional torus Td⊂(C×)d. Reciprocally,
Zd is the dual group of the torus (continuous homomorphisms from (C×)d to C×). The bihomomorphism zn

captures both directions,
Zd
× (C×)d Ð→ C× ∶∶ (n, z) z→ zn. (2.21)

Denote by Ez the eigenspace of the Zd action on F (V) ≅ Zd ⊗CW for the weight z−1. Because f(y+̇n) =
znf(y), each f ∈ Ez is determined uniquely by its restriction to W , and thus, as vector spaces,

Ez ≅ CW . (2.22)

Explicitly, an element g ∈ CW corresponds to an element Q(g, z) ∈ Ez by

Q(g, z)(n) = gzn, (2.23)

considered as an element of Zd⊗CW (or as an element of F (V), one would write Q(g, z)(v) = g(w)zn, where
v = n+̇w with w ∈W ). The symbol Q stands for “quasi-periodic”.

For each z ∈ (C×)d, let εz be a distinguished element of Ez such that εz(x) /= 0 for all x ∈ V. Then each
f ∈ Ez can be written as

f(x) = f̃(x)εz(x). (2.24)

The function f̃ is called the periodic part of f (with respect to the choice of εz). For example, one can take
εz(y) = 1 for all y ∈ W so that εz(y+̇n) = z

n. When V is a periodic subset of Rd, as in Equation (2.4), let
q = (q1, . . . , qd) be the dual (momentum) variable so that kj = q ⋅ vj and zj = e

iq⋅vj . Then, for x ∈ Rd, one can
define ϵz(x) = e

iq⋅x, and restrict this function to V ⊂ Rd.

2.2.2 Fourier inversion. We have discussed that F0(V) is isomorphic to C[z±]W through the formal

Floquet transform. By evaluating f̂ at actual points z ↦ eik ∈(C×)d, it becomes a function whose restriction
to the compact torus Td is a trigonometric polynomial in k ∈ Rd/(2πZ)d,

f̂(eik) = ∑
n∈supp(f)

f(−n)eik⋅n (finite sum). (2.25)

After evaluation on Td, C[z±]W becomes the ring of trigonometric polynomial functions T (Td)⊗CW on the

compact d-torus, which have the form (2.25). We denote the map from f ∈ F0(V) to f̂(e
ik) by U ,

U ∶ F0(V) ≅ F0(Zd
) ⊗CW

Ð→ T (Td
) ⊗CW . (2.26)

Uf could also be denoted by f̂ , with the understanding that a formal polynomial f̂(z) is being evaluated.
An L2 norm on Ez is defined by ∥f∥22 = ∑y∈W ∣f(y)∣

2. A fundamental theorem of Fourier analysis says
that U is an L2 isomorphism,

∑
n

∣f(n)∣2 = ∫
Td
∣Uf(z)∣

2
dṼ (z), (2.27)
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in which dṼ (z) = dk1⋯dkd/(2π)
d, with inverse given by

f(n) = ∫
Td
f̂(n, z)dṼ (z). (2.28)

In terms of the periodic part f̃ of f̂ , this is the familiar inverse Fourier transform with kernel εz(x),

f(y+̇n) = ∫
Td
f̃(y, z) εz(y+̇n)dṼ (z). (2.29)

2.2.3 Completion to L2. So far, we have defined the formal (algebraic) and analytical Fourier transforms
on functions of compact support in V,

f ∈ F0(V) Ð→ f̂(z) ∈ C[z±]W Ð→ Uf ∈ T (Td
) ⊗CW . (2.30)

Completion in the root-mean-square norm yields the unitary Fourier transform of Hilbert spaces,

U ∶ ℓ2(V) Ð→ L2
(Td
) ⊗CW . (2.31)

The inversion formulas (2.28) and (2.29) state that the formula (2.16) for the Floquet transform produces
the components in all the Ez required to build f . Fourier inversion amounts to writing ℓ2(V) as a direct
integral over the torus of simpler spaces [36, §XIII.16],

ℓ2(V) = ∫
⊗

Td
Ez dṼ(z), f = ∫

⊗

Td
f̂(●, z)dṼ(z), (2.32)

and the transformation f̂ ↦ f̃ is a simple gauge transformation that transforms all the fibers Ez to E1.

2.2.4 Spec and spectrum. Evaluation of the formal Floquet transform at values in the torus is analogous

to the Gel ′fand transform for Banach algebras. Evaluation of f̂(z) ∈ C[z±] at z ↦ ζ = (ζ1, . . . , ζd) ∈ (C×)d

sends the polynomial f̂(z) to the complex number f̂(ζ), which is the representative of the coset f̂(z)mod⟨z−

ζ⟩ in the field C[z±]/⟨z − ζ⟩ ≃ C. Formally, f̂ becomes a function on the space of maximal ideals in C[z±],
called SpecC[z±], which is homeomorphic to (C×)d,

(C×)d ≅ SpecC[z±] ∶∶ ζ ←→ ⟨z − ζ⟩. (2.33)

Equivalently, SpecC[z±] is the set of ring homomorphisms from C[z±] to C. The homomorphism that takes

the indeterminate zj to ζj for j ∈ [1, d] has kernel then ideal ⟨z−ζ⟩ and sends the polynomial f̂(z) to the

number f̂(ζ).
As we have seen, translation of compactly supported functions by n, that is, the operator Sn=∏j∈[1,d] S

nj

j

becomes multiplication of Laurent polynomials by z−n, which in turn becomes multiplication of trigonometric
polynomials on Td by the function ζ−n. This means that, in the direct integral (2.32), the fiber at ζ ∈Td of
the operator Sn, acting on the fiber CW at ζ is just ζ−nIW . Particularly, the elementary shift Sj has fiber
at ζ equal to the coordinate ζj . This is because the spectrum of Sj is the unit circle, being the range of the
j-th coordinate function ζj on Td. In this way, the unitary part of SpecC[z±] gives the spectrum of the shift
group. More generally, a polynomial in the elementary shifts, with matrix coefficients,

A(S) = ∑
n∈Zd

AnS
n (2.34)

has spectrum equal to the image of the multi-valued eigenvalue function

σ(ζ) = {λ ∶ det(A(ζ) − λ) = 0} (2.35)

over the compact torus Td. The Laurent polynomial det(A(ζ)−λ) and its zero set predominate the L2

spectral theory of the operator A(S). An operator that commutes with the shift group is called periodic,
and these are discussed in the next section.
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3 Periodic graph operators

An operator A acting on functions on V is periodic if it commutes with the shift group; such an operator has
translational symmetry. Periodic operators in ℓ2(V) have a dichotomy of spectrum: eigenvalues of infinite
multiplicity and bands of continuous spectrum. Eigenvalues are completely described by A as a module
endomorphism, while continuous spectrum comes from the Bloch variety, which is the singular set of the
matrix Â(z)−λI. An interesting exposition of the module homomorphism point of view with extension from
Zd to amenable group actions is presented in [23].

3.1 On F0(V): Module endomorphism

A periodic operator A restricted to functions of compact support is a module endomorphism of C[z±]W .

3.1.1 Definition and notation. Let A be a linear operator on F0(V), and denote by Â the corresponding

operator on C[z±]W as a vector space over C, through the Floquet transform. That is, Â is defined through

(Âf̂)(z) = (̂Af)(z). (3.36)

As F0(V) ≅ F0(Zd) ⊗ CW consists of functions of finite support on Zd×W , it is convenient to denote the
evaluation of f ∈ F0(V) at (n ∈ Zd, v ∈W ) by fv(n), so that f(n) refers to the vector (fv)v∈W in CW . Being
linear, A is associated with its kernel, or matrix, a(m,n) through

(Af)(m) = ∑
n∈Zd

a(m,n)f(n). (3.37)

For each m,n ∈ Zd, a(m,n) is a linear operator on CW and is thus represented by a matrix (avw(m,n))v,w∈W
indexed by W . This means

(Af)v(m) = ∑
n∈Zd

∑
w∈W

avw(m,n)fw(n). (3.38)

The operator A has finite range if there exists a number R such that, for all m,n ∈ Zd, a(m,n)=0 whenever
∣m − n∣ > R. If a(n,m) = a(m,n)∗, then A is self-adjoint. Here, ( )∗ is the adjoint with respect to the
standard inner product of CW .

The linear operator A is periodic if, for all f ∈ F0(Zd) ⊗CW ,

(Af)(●+̇n) = A[f(●+̇n)](x) ∀n ∈ Zd. (3.39)

More compactly, this means that A commutes with the shift group Zd,

n⋅Af = A(n⋅f) ∀n ∈ Zd. (3.40)

Observe that A is periodic if and only if

a(m,n) = ã(m − n) (3.41)

for some function ã, which we will just denote by a. A periodic linear operator of finite range has a(m) = 0
whenever ∣m∣ > R; denote by r(A) the minimal such R. The operator is self-adjoint if a(−m) = a(m)∗. This
means that A is a convolution operator

(Af)(m) = ∑
n∈Zd

a(m − n)f(n) = ∑
n∈Zd

a(n)f(m − n), (3.42)

or, equivalently, a linear combination of translations with matrix coefficients,

A = ∑
n∈Zd

a(n)n⋅ = ∑
n∈Zd

a(n)Sn, (3.43)

as in (2.34). When W consists of only one vertex, A is an element of the group algebra C[Zd] and is
sometimes called a Toeplitz operator. Now identify f with ∑ f(n)n ∈ C[Zd]W and use (2.5) to obtain

∑a(n)n ⋅ ∑ f(n)n = ∑(Af)(n)n. (3.44)

6



Remark 1. A linear operator A on F0(V) corresponds to a directed, labeled graph Γ = (V,E). Identifying
V with Zd×W , there is a directed edge v+̇m←w+̇n in E with label avw(m,n), when avw(m,n) ≠ 0. Loops
v+̇m⟲ are removed and their labels avv(m,m) become a potential function V ∶ V → C. For an edge v←w,
we will write av←w for the corresponding edge label Then, for f ∈ F0(V), v,w ∈ V (3.38) becomes

(Af)(v) = V (v)f(v) + ∑
v←w

av←wf(w). (3.45)

When A has finite range, the graph Γ is locally finite in that each vertex v has finitely many neighbors
{w ∈ V ∣ v ← w}. By (3.45), A is a Schrödinger operator: a potential plus weighted graph Laplacian, and it
acts on F (V).

If in addition A is Zd-periodic, then Γ is a Zd-periodic labeled graph. E.g. the underlying graph is periodic
with V ∶ V → C and a∶E → C periodic functions. In this case, the operator A commutes with the Zd-action, it
is periodic. When avw(m,n) = awv(n,m)

∗, the operator A is self-adjoint, and when avw(m,n) = awv(n,m),
we may replace the directed graph by a corresponding undirected graph.

3.1.2 Examples. The simplest example is when V = Z and there is an (undirected) edge between n and
n ± 1 with weight −1, so that Γ is and A becomes

(Af)(n) = −f(n − 1) + V (n)f(n) − f(n + 1). (3.46)

Another example is the Z2-periodic hexagonal lattice (graphene), in which W = {v,w} and there are (undi-
rected) edges connecting v(= v+̇(0,0)) to each of w, w � (1,0), and w � (0,1), and this is extended to all of
Z2×W by periodicity. We show the hexagonal lattice with W shaded and the Z2-action indicated by the
arrows, together with a picture of a labeling of edges in a neighborhood of W .

W

v v+̇(1,0)

v+̇(0,1)

ww � (1,0)

w � (0,1)
(1,0)

(0,1)

a

c

c

b b (3.47)

The operator A for the hexagonal graph with edge-labeling a, b, c as above is

(Af)(v+̇n) = V (v)f(v+̇n) + af(w+̇n) + bf(w+̇n � (1,0)) + cf(w+̇n � (0,1))
(Af)(w+̇n) = V (w)f(w+̇n) + af(v+̇n) + bf(v+̇n+̇(1,0)) + cf(v+̇n+̇(0,1))

. (3.48)

3.1.3 Formal Fourier transform. Under the formal Fourier (or Floquet) transform n↦ z−n, translation
by n becomes multiplication by z−n, and periodicity becomes ring homomorphism. More precisely, with

Â(z) = ∑a(n)z−n, f̂(z) = ∑ f(n)z−n, Âf(z) = ∑(Af)(n)z
−n, (3.49)

formula (3.44) becomes Â(z)f̂(z) = (Âf) (z). This is an algebraic form of the general principal that an
operator commuting with a group action becomes a multiplication operator under (formal) Fourier transform.

In summary: The space F0(Zd), identified with R ∶= C[z±] through the formal Floquet transform,
is a vector space over C and also a ring (convolution of functions = multiplication of polynomials). Thus
F0(V) = R

W is a free R-module. Consequently, one can study general C-linear operators on RW, or specialized
ones that are also R-module endomorphisms of RW. The operator A, when pulled over to RW, is written Â.
The periodicity property (3.40) means that Â commutes with multiplication by zn for all n ∈ Zd. This

happens if and only if Â commutes with multiplication by any f̂(z) ∈ R; and this is simply the statement
that Â is a module endomorphism of RW . This amounts to the following (un)remarkable result.

Theorem 2. A C-linear operator A on F0(V) is periodic if and only if Â is a module endomorphism
of C[z±]W .
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Any endomorphism Â ∶ RW → RW is given by a matrix âvw(z) of elements of R indexed by W , that is

(Âp(z))v = ∑
w∈W

âvw(z)pw(z), (3.50)

and one can identify Â with its matrix (âvw(z))v,w∈W . For the hexagonal graph, the matrix Â(z) becomes

(
V (v) a + bx−1 + cy−1

a + bx + cy V (w)
) , (3.51)

where z = (x, y) with x corresponding to (1,0) and y to (0,1), where v indexes the first row and column and
w the second row and column, and with the labeling of (3.47).

3.1.4 Eigenvalues. For λ ∈ R, the equation (A−λ)f = 0 for f ∈ F0(V) is equivalent to (Â(z)−λ)f̂(z) = 0,

where f̂(z) ∈ C[z±]. Thus λ is an eigenvalue of Â(z). For all n ∈ Zd, we have (Â(z) − λ)znf(z) = 0, so that
all shifts of f are also eigenvectors of A and thus λ is an eigenvalue of infinite multiplicity.

3.2 On F (V): Floquet eigenspaces

An operator A of finite range can be applied to functions of infinite support. Equivalently, if Â(z) is a
Laurent polynomial in z = (z1, . . . , zd) with coefficients that are W×W matrices with entries in C, Â(z) can
be applied to Laurent series with vector coefficients, that is, to elements of C[[z±]]W .

3.2.1 Action of A on Eζ. For ζ ∈ (C×)d, nonzero elements of the space Eζ of quasi-periodic functions

have infinite support. A periodic operator A is invariant on Eζ , so via the isomorphism Eζ ≅ CW (2.22),

the restriction of A to Eζ induces an operator on CW . This operator is just Â(ζ), the evaluation of Â(z)

at z = ζ. For a function f ∈ F (V), denote f̂(z) also by F(f)(z).

Theorem 3. Let A be a periodic operator of finite range, and let g ∈ CW and ζ ∈ (C×)d. Then

Â(z)[FQ(g, ζ)] = FQ(Â(ζ)g, ζ). (3.52)

Equivalently, A[Q(g, ζ)] = Q(Â(ζ)g, ζ).

Proof. By definition, one has

Q(g, ζ)(n) = g ζn, FQ(g, ζ)(z) = ∑
n∈Zd

g ζn z−n. (3.53)

Let Â(z) = ∑ℓ∈ΛA
ℓzℓ for some finite subset Λ of Zd. A straightforward sequence of equalities yields

Â(z)[FQ(g, ζ)] = Â(z)( ∑
n∈Zd

gζnz−n) = ∑
n∈Zd

ζnÂ(z)gz−n = ∑
n∈Zd

ζn∑
ℓ∈Λ

Aℓgzℓ−n

= ∑
ℓ∈Λ

Aℓg ∑
n∈Zd

ζnzℓ−n = ∑
ℓ∈Λ

Aℓg ∑
n∈Zd

ζn+ℓz−n

= ∑
n∈Zd

z−nζn∑
ℓ∈Λ

Aℓζℓg = ∑
n∈Zd

z−nÂ(ζ)gζn = FQ(Â(ζ)g, ζ) .

(3.54)

3.2.2 Floquet-Bloch theorem. By Theorem 2, operators that are periodic on V with respect to the free

Zd action are exactly those that become multiplication operators under the formal Floquet transform. That
is, Af becomes Â(z)f̂(z), which is matrix-vector multiplication of Laurent polynomials. Evaluation of these
polynomials at a point ζ ∈ Td realizes the Fourier transform, that is

(Uf)(ζ) = Â(ζ)f̂(ζ). (3.55)

3.3 On L2(V): Full spectral resolution

When extended to L2, the operator A enjoys all the theory of closed operators in Hilbert space.
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3.3.1 Floquet-Bloch theorem revisited. In L2, Equation (3.55) is a discrete version of the classical
Floquet-Bloch Theorem [36, Thm XIII.97], which represents A as a decomposable operator through the
direct integral (2.32),

A = ∫
⊗

Td
Â(z)dṼ(z), Af = ∫

⊗

Td
Â(z)f̂(●, z)dṼ(z). (3.56)

The resolvent of A is represented by

(A − λ)−1f = ∫
⊗

Td
(Â(z) − λI)−1f̂(●, z)dṼ(z). (3.57)

3.3.2 Invertibility and spectrum. We do not expect that (A − λI) is invertible on F0(V). This is best

seen through the Floquet transform: The matrix operator (Â(z)−λIW ) on C[z±]W is a Laurent polynomial
in z, so it takes polynomials to polynomials, but its inverse does not. Extending A to ℓ2(V) ≅ ℓ2(Zd) ⊗CW ,
or, equivalently, extending Â(z) to L2(Td) ⊗CW , the inverse as a bounded linear operator is

(Â(z) − λI)−1 =
A�(z, λ)

D(z, λ)
, (3.58)

whenever this is regular on Td. Here, A�(z, λ) is the adjugate matrix to Â(z)−λI and

D(z, λ) = det(Â(z)−λI). (3.59)

The determinant D(z, λ) is known as the dispersion function for the operator A. For those λ for which
D(z, λ) is non-vanishing for all z ∈ Td, the inverse (Â(z) − λI)−1 exists from L2(Td) ⊗CW to ℓ2(V). Thus
the resolvent set of A is the open set

ρ(A) = {λ ∈ C ∶D(z, λ) /= 0 ∀z ∈ Td} , (3.60)

and the spectrum of A is its complement σ(A) = C∖ρ(A).
Symmetry of the operator A in the sense that, for all f, g ∈ F0(V),

(Af, g) = (f,Ag) (3.61)

occurs whenever the matrix for A is Hermitian, that is, avw(m,n) = (awv(n,m))
∗. The extension of A to

ℓ2(V) is self-adjoint. This implies that the matrix Â(z) is self-adjoint for all z ∈ Td,

Â(z) = Â(z)∗ ∀z ∈ (T∗)d, (3.62)

and this implies the more general reflection property

Â(z̄−1) = Â(z)∗ ∀z ∈ (C×)d, (3.63)

which can also be checked directly by the construction Â(z) from A. In this situation, the spectrum of A is
real, σ(A) ⊂ R and, furthermore, D(z, λ) is real-valued whenever z ∈ Td and λ ∈ R.

3.3.3 Spectral bands. When A is self-adjoint, D(z, λ) = 0 defines a multi-valued real eigenvalue function

λ(z) on the torus Td with real eigenvalue branches λj(k) (z = e
ik), j ∈ [1, ∣W ∣]. The image of all of these

branches constitutes the spectrum σ(A) of A, which consists a union of closed intervals called spectral bands.
The branches of λ are called band functions. Spectral bands are discussed in §4.

3.3.4 Density of states. The physical observable known as the density of states can be expressed in terms
of the band functions [19, Ch. 11]. If ν is the integrated density of states, the density is

δ(λ) =
dν

dλ
(λ) =

1

∣W ∣

∣W ∣

∑
j=1
∫
λ−λj(k)=0

dS̃

∣∇kλj ∣
, (3.64)

9



in which dS̃ is the Euclidean volume of the Fermi surface in Td scaled by 1/(2π)d.
For periodic operators, there is another formula for the density of states. For a subset V ′ ⊂ V, let 1V ′

denote the spatial projection (cutoff) of functions onto CV
′

, and for a Borel set B ⊂ R, let χB denote the
spectral projection onto B in the spectral resolution of A. For integers ℓ,

Λℓ = [−ℓ, ℓ]
d
⊂ Zd, (3.65)

which is empty if ℓ < 0. The density of states of A is the Borel measure

δ(B) = lim
ℓ→∞

tr(χB1W+Λℓ
)

∣W +Λℓ∣
. (3.66)

Since A is periodic, χB commutes with the shift Sn, and thus Sn1V ′S
−n = 1V ′+n, making χB1V ′ unitarily

equivalent to χB1V ′+n. Thus tr(χB1W+Λℓ
) = ∣Λℓ∣ tr(χB1W ), and we obtain

δ(B) =
tr(χB1W )

∣W ∣
. (3.67)

This is the von Neumann formula for density of states of a periodic operator. A homological formula based
on a free resolution of modules is derived in [23].

3.4 Eigenfunctions: Module vs. L2

Recall the dichotomy mentioned at the beginning of §3. This section shows how A as a module endomorphism,
that is, A restricted to F0(V), gives full information on the L2 eigenspaces of A.

3.4.1 Flat band functions. §3.1.4 showed that eigenvalues of Â(z) on C[z±]W are of infinite multiplicity.

Furthermore, for each ζ ∈ (C×)d, the sum of shifts ∑n∈Zd f(● � n)ζn (this is the Floquet transform at z = ζ)
is a λ-eigenfunction of A and is ζ-quasi-periodic. Particularly, λ is an eigenvalue of Â(ζ) for each ζ ∈ Td.
This means that A has a constant, or “flat”, spectral band function at λ.

3.4.2 Module eigenfunctions and L2 eigenfunctions. In fact, the eigenvalues of Â(z) on C[z±]W are
exactly all the eigenvalues of A on ℓ2(V).

Theorem 4. The following statements are equivalent.

1. λ0 is an eigenvalue of Â(z), that is, there exists nonzero f(z) ∈C[z±] such that (Â(z)−λ0)f(z) = 0
in C[z±].

2. λ0 is an L2 eigenvalue for A, that is, there exists f ∈ L2(V) such that (A − λ0)f = 0.

3. (λ − λ0) is a factor of D(z, λ).

When these statements hold, λ is an eigenvalue of A of infinite multiplicity and the L2 eigenspace contains
a dense linear subspace of compactly supported eigenfunctions. The set of eigenvalues of A is finite.

We prove (1)⇒(3)⇒(2)⇒(1), although (1)⇒(2) is straightforward.
Statement (1) means that there exists a nonzero Laurent polynomial vector f(z) ∈ C[z±]W such that

(Â(z) − λ0I)f(z) = 0 in C[z±]W . Let X be the variety on which f(z) vanishes,

X = {ζ ∈ (C×)d ∶ fv(ζ) = 0 ∀v ∈W}. (3.68)

For all ζ ∈ (C×)d∖X, f(ζ) is a nonzero vector in CW and (Â(ζ)−λ0I)f(ζ) = 0, so D(ζ, λ0) = 0 as (C×)d∖X
is an open dense set. Therefore D(z, λ0) = 0 as a Laurent polynomial in z. This means that D(z, λ) has
(λ − λ0) as a factor.

Assuming (3), for each ζ ∈ (C×)d there is a vector f(ζ) ∈ CW such that (Â(ζ) − λ0)f(ζ) = 0, and the
function f(ζ) can be taken to be continuous on Td. Fourier inversion provides a function f̌ ∈ ℓ2(Zd) such
that (A − λ0)f̌ = 0.

That (2) implies (1) follows from the remarkable fact that the space of compactly supported eigenfunctions
is dense in the whole λ-eigenspace, which is proved below. To see that the dimension of the eigenspace is
infinite, let f be a nonzero compactly supported λ-eigenfunction, let s be the diameter of the support of f
and note that all the shifts of f by sZd have mutually disjoint supports and are therefore orthogonal.
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3.4.3 Approximation by compactly supported eigenfunctions. First, let E be a nontrivial shift-
invariant subspace of the λ-eigenspace of A, and we will prove that there exists a compactly supported
λ-eigenfunction of A that is not orthogonal to E , a theorem due to Kuchment [26]. The proof is based on
those of [26, 20]. A proof for amenable groups is in [23].

Denote by P the orthogonal projection onto E . For any positive integers ℓ and r, set Λ = Λℓ and
∂ = Λℓ ∖Λℓ−r. The argument in §3.3.4 yields

tr(1WP )

∣W ∣
=

tr(1W+ΛP )

∣W ∣∣Λ∣
. (3.69)

The space E being nontrivial implies that tr(1WP ) > 0. Since dim(im1W+∂) = ∣W +∂∣ = ∣W ∣∣∂∣, we obtain

rk(1W+∂E) ≤ ∣W ∣∣∂∣. (3.70)

Equation (3.69) together with ∥1W+∂P ∥ ≤ 1 yield

∣Λ∣ tr(1WP ) = tr(1W+ΛP ) ≤ rk(1W+ΛP ). (3.71)

Fix r fixed, observe that ∣∂∣/∣Λ∣ → 0 as ℓ→∞. Since tr(1WP ) > 0, one can therefore choose ℓ such that

∣∂∣ < ∣Λ∣
tr(1WP )

∣W ∣
. (3.72)

Putting (3.70), (3.71), and (3.72) together yields

rk(1W+∂P ) < rk(1W+ΛP ). (3.73)

Consequently, there exists ϕ ∈ E such that ϕ /∈ ker(1W+Λ) and ϕ ∈ ker(1W+∂).
Now apply this result with r=2r(A) (see page 6). Then ϕ is a λ-eigenfunction of A, ϕ is not identically

zero on Λ, and ϕ vanishes on ∂. It follows from the definition of r(A) that the compactly supported function
ψ = 1W+Λϕ is also a λ-eigenfunction of A. Since (ψ,ϕ) = (ψ,ψ) /= 0, ψ is not orthogonal to E .

Denote by F the closure of the span of all compactly supported λ-eigenfunctions of A, and let E be its
orthogonal complement within the λ-eigenspace of A. Since both F and the λ-eigenspace are shift-invariant,
so is E . If E is nontrivial, we have proved above that there is a compactly supported eigenfunction that is
not orthogonal to E , which contradicts the definition of E . We conclude that F is equal to the λ-eigenspace
of A and that therefore this eigenspace contains the compactly supported λ-eigenfunctions as a dense subset.

4 Bloch and Fermi varieties

The relation D(z, λ) = 0 is the dispersion relation for the periodic operator A. It has two fundamental
meanings. One is that if D(z, λ) = 0 for some z ∈ Td, then λ ∈ σ(A). The other is that, for any λ ∈ C and
z ∈ (C×)d, D(z, λ) = 0 implies that A admits a Floquet mode at energy λ and weight z. It defines the Bloch
variety whose cross section at a fixed value of λ is the Fermi variety at energy λ.

4.1 Definitions

4.1.1 The Bloch variety. The dispersion relation of a periodic graph operator is the zero set of the
dispersion function, and it is also known as the Bloch variety. The complex Bloch variety is

BA = {(z, λ) ∈ (C×)d ×C ∶D(z, λ) = 0} , (4.74)

and the real Bloch variety is
RBA = {(z, λ) ∈ Td

×R ∶D(z, λ) = 0} . (4.75)
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Below are three pictures of real Bloch varieties for the hexagonal lattice (3.47).

(a, b, c) = (−1,−3,−1) (a, b, c) = (−1,−1,−1) (a, b, c) = (−1,−1,−1)

(4.76)

The third has V (v) = V (w) and is the Bloch variety of the graph Laplacian, later referred to as graphene.
Its two singular points are called Dirac points, and Figure 1 shows some perturbations of it.

4.1.2 The Fermi variety. The Fermi variety, or Fermi surface, is a cross section of the Bloch variety at
a specific energy λ. For λ ∈ C, the complex Fermi surface is

ΦA,λ = {z ∈ (C×)d ∶D(z, λ) = 0} , (4.77)

and for λ ∈ R, the real Fermi surface is

RΦA,λ = {z ∈ Td
∶D(z, λ) = 0} . (4.78)

We show three real Fermi surfaces, which are curves in T2. The first two are from the middle Bloch
variety in (4.76) at λ = 1.5 and λ = 1.7, where the potential has been normalized so that V (v) = 0 and
V (w) = 1, so that the three saddle points on the upper branch are at λ = 1

2
(1 +
√
5). The third is from a

different Bloch variety. They are displayed in the fundamental domain [−π
2
, 3π

2
]2.

(4.79)

4.2 Spectrum of A

The spectrum of a discrete periodic operator is determined by its Bloch variety annd its projection onto
the real λ axis. The spectrum is intimately connected with the Floquet modes of the operator. Recall from
§3.3.2 that the spectrum of A is the the closed set

σA = {λ ∈ C ∶ A − λI does not have a bounded inverse in ℓ2(V)} . (4.80)

4.2.1 Floquet modes. Floquet modes were introduced in §3.2 as eigenfunctions of the shift group Zd.

Floquet (or Floquet-Bloch) modes for a periodic operator A are simultaneous eigenfunctions of Zd and A.
For each point (z, λ) on the complex Bloch variety, we have a simultaneous eigenfunction of the shift group
Zd and the operator A. That is, a function f ∶ V → C such that

n⋅f = znf and Af = λf. (4.81)

Such a function is called a Floquet mode for energy λ and weight z, or quasi-momentum k, where z = eik.
Floquet modes are not in ℓ2(V) because of the first equation.

Theorem 5. Let ζ ∈ (C×)d and λ ∈ C be such that D(ζ, λ) = 0. Then there exists a Floquet mode for energy λ
and weight ζ.
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Proof. Since D(ζ, λ) = 0, there exists g ∈ CW such that (Â(ζ) − λIW )g = 0. This makes the right-hand side
of (3.52) vanish, with Â(z) − λIW in place of Â(z). Therefore (Â(z) − λIW )[FQ(g, ζ)] = 0, so that

(A − λI)Q(g, ζ) = 0. (4.82)

For f = Q(g, ζ), the second equation of (4.81) is satisfied, and the first is satisfied by definition of Q.

4.2.2 Spectrum and D(z, λ). The spectrum of a periodic operator A has a geometric description:

σ(A) = {λ ∈ C ∶ ΦA,λ ∩Td
/= ∅} . (4.83)

Theorem 6. A number λ ∈ C is in the spectrum of A if and only if there exists ζ ∈ Td such that D(ζ, λ) = 0.

Fix λ ∈ C and suppose D(ζ, λ) is nonzero for all ζ ∈ Td. Then (Â(ζ) − λ)−1 exists as an analytic matrix-
valued function on Td, and therefore is a bounded multiplication operator on L2(Td). By the unitarity of
the Fourier transform U ∶ ℓ2(V) → L2(Td), the operator A − λ is also invertible. Now suppose that there
exists ζ ∈ Td such that D(ζ, λ) = 0. Then by Theorem 5, there exists a Floquet mode f ∶ V → C for energy λ
and weight ζ. For each positive integer ℓ, define the compactly supported function fℓ ∶ V → C by

fℓ(x) =
1

∥f∥W ∣Λℓ∣
1/2

1W+Λℓ
(x)f(x), (4.84)

in which ∥f∥2W = ∑x∈W ∣f(x)∣
2. Set r = 2r(A) and ∂ℓ = Λℓ+r∖Λℓ−r. For all x ∈ V,

∥[(A − λ)fℓ](x)∥ ≤
∥A − λ∥

∣Λℓ∣
1/2

, (4.85)

If x ∈ V∖(W + ∂ℓ), then [(A − λ)fℓ](x) = 0. Therefore,

∥(A − λ)fℓ∥ℓ2(V) ≤
∥A − λ∥

√
∣W ∣∣∂ℓ∣

∣Λℓ∣
1/2

Ð→ 0 (ℓ→∞), (4.86)

whereas ∥fℓ∥ℓ2(V) = 1. This implies that A − λ does not have a bounded inverse on ℓ2(V). The sequence
{fℓ}ℓ∈N is known as a Weyl sequence for A.

4.2.3 Self-adjointness and real structure. When the operator A is self-adjoint, the real Bloch and
Fermi varieties are naturally real algebraic varieties, in a non-standard way. Indeed, complex conjugation
z ↦ z is an involution on Cn that is anti-holomorphic in that the induced map on complex tangent spaces
is conjugate-linear. Its fixed points are Rn. More generally, a real structure on a complex space X is an
anti-holomorphic involution on X. Its set of fixed points form the real points X(R) of this real structure on
X. When they are nonempty and include a smooth point of X, we have that dimRX(R) = dimCX.

Recall from §3.3.2 that when A is self-adjoint, Â(z) satisfies the reflection principle Â(z̄−1)=Â(z)∗, which
implies the corresponding identity of D(z, λ),

D(z̄−1, λ̄) = D(z, λ), (4.87)

for z ∈ (C×)d and λ ∈ C.
The associated involution (z, λ) ↦ (z̄−1, λ̄) is a non-standard real structure on the space (C×)d ×C with

real points Td × R. It is non-standard as it differs from the usual structure (z, λ) ↦ (z̄, λ̄). By (4.87), this
restricts to a real structure on the complex Bloch variety BA and for λ ∈ R, on the complex Fermi variety
ΦA,λ. Their real points are the real Bloch variety RBA and real Fermi variety, respectively.

Thus the real Bloch variety has dimension d in Td ×R, and not d−1, which is what one expects from a
näıve dimension count: The complex Bloch variety has real codimension 2 in its ambient (C×)d×C, implying
that the real Bloch variety should have codimension 2 in Td ×R, and hence dimension d−1. Similarly, a real
Fermi variety has dimension d−1 and not the näıve dimension count of d−2. Moreover, the real Bloch variety
determines and is determined by the complex Bloch variety, together with its non-standard real structure.

There are further constraints imposed by A being self-adjoint. The property (4.87) implies that the terms
of the polynomial D(z, λ) come in pairs of the form aznλm + āz−nλm for some a ∈ C, n ∈ Zd, and m ∈ N.
Thus, for fixed ζ ∈ Td, D(ζ, λ) is a polynomial in λ with real coefficients. This only implies that set of roots
of D(ζ, λ) = 0 are stable under complex conjugation. In fact, as A(ζ) is hermitian, all these roots are real.
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4.2.4 Floquet sheaves and modules. Floquet modes of §4.2.1 have an algebraeo-geometric interpreta-

tion, The projection map E ∶= ((C×)d × C) × CW → (C×)d × C exhibits E as a (trivial) vector bundle with

fiber CW . The characteristic matrix Â(z) − λIW is an endomorphism of E . When D(z, λ) ≠ 0, it is an
isomorphism of the fiber CW of E at the point (z, λ), and when D(z, λ) = 0, Theorem 5 implies that the
Floquet modes at (z, λ) are exactly the kernel of Â(z) − λIW . In the language of algebraic geometry [39],
the Floquet modes form the kernel sheaf F ⊂ E of the endomorphism Â(z) − λIW of E , and the support of
this Floquet sheaf F is the Bloch variety. In the examples we give, the fibers of F at smooth points of BA
are 1-dimensional, and at the singular (Dirac) points in (4.76), they have dimension 2.

The matrix Â(z) − λIW of polynomials in C[z±, λ] is also an endomorphism of the free C[z±, λ]-module
C[z±, λ]W . The counterpart of the Floquet sheaf F is the kernel of this map Â(z) − λIW , which is also a
module for the ring C[z±, λ] (for more on modules over commutative rings, see [7, Ch. 5]). By the dictionary
between affine algebraic varieties and finitely generated commutative C-algebras, these two perspectives,
kernel sheaf and kernel module, are equivalent ways to view the same object. This module-theoretic point
of view is due to Kravaris [23], who reinterpreted work of Kuchment [26]. Kravaris gave new results on the
density of states using free resolutions for general periodic operators, generalizing earlier work of Gieseker,
Knörrer, and Trubowitz [19] for the square lattice Z2.

4.3 Reducibility and defect eigenvalues

The reducibility of the Bloch and Fermi varieties has spectral consequences, notably concerning the existence
of embedded eigenvalues caused by local defects, as studied by Kuchment and Vainberg [25].

4.3.1 Components of the Bloch variety. As an element of C[z±, λ], D(z, λ) has a decomposition into
irreducible elements that are unique up to multiplication by constants and monomials in C[z±],

D(z, λ) = F (λ)
α

∏
j=1

D̃j(z, λ). (4.88)

All the factors that are polynomials in λ alone are incorporated into F (λ) = ∏
γ
ℓ=1(λ − λℓ)

pℓ , with the real

numbers λℓ being distinct. We do not require the D̃j to be distinct. Each factor D̃j(z, λ) corresponds to a
component of the Bloch variety BA,

B
j
A = {(z, λ) ∈ (C

×
)
d
×C ∶ D̃j(z, λ) = 0} . (4.89)

Each of these components contributes a set of spectral bands and gaps to the spectrum of A,

σ̃j(A) = {λ ∈ R ∶ ∃z ∈ Td, (z, λ) ∈ BjA}, (4.90)

and each number λℓ is an eigenvalue of A of infinite multiplicity. Thus,

σ(A) = {λℓ}
γ
ℓ=1 ∪

α

⋃
j=1

σ̃j(A).

Roots λℓ of F (λ) are flat bands of the Bloch variety. The Bloch variety of the Lieb lattice (on the left
below) has a flat band when the potentials at the vertices of degree 2 are equal.

(4.91)
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4.3.2 Components of the Fermi variety. Let λ0 ∈ C be fixed. The factorization of the z-dependent
factors of D(z, λ) in (4.88) persists for D(z, λ0) as an element of C[z±], but the factorization may possibly
be refined further, as each factor D̃j(z, λ0) has its own factorization in C[z±],

D(z, λ0) = F (λ0) ∏
ℓ∈[1,β]

Dℓ(z, λ0), (4.92)

with β ≥ α. Each D̃j(z, λ0) is a product of some of the Dℓ(z, λ0). Note that the number β of factors is taken
to be independent of λ0, and that this factorization is meaningful even if F (λ0) = 0. One can prove that
either D(z, λ0) is reducible for all λ0 ∈C or it is reducible for only a finite set of values of λ0 (this is known
as Hilbert’s Irreducibility Theorem). For example, the pure Schrödinger operator on the graph below has
an irreducible Bloch variety, but its Fermi variety at the energy of its Dirac points is highly reducible and is
situated on the Bloch variety in a very interesting way.

(4.93)

Each factor Dj(z, λ) corresponds to a component of the Fermi variety ΦA,λ0 ,

Φj
A,λ0

= {z ∈ (C×)d ∶Dj(z, λ0) = 0} . (4.94)

Each of these components contributes a set of spectral bands and gaps to the spectrum of A, which refine
the bands σ̃j(A),

σj(A) = {λ0 ∈ R ∶ Td
∩Φj

A,λ0
/= ∅}. (4.95)

4.3.3 L2 response to source in the continuum. We may view Â(z) as a self-adjoint analytic family

over Td of operators on CW . Fix λ ∈ R, and consider the equation

(A − λ)u = f in ℓ2(V). (4.96)

Under the Fourier transform, this becomes (Â(z) − λI)û(z)= f̂(z) on L2(Td,CW ), and hence

û(z) =
R(z, λ)f̂(z)

D(z, λ)
, (4.97)

in which R(z, λ) is the adjugate of (Â(z) −λI), a Laurent polynomial in z with coefficients in CW×W . Note
that u ∈ ℓ2(V) if and only if û ∈ L2(Td,CW ), and this happens when the right-hand side of (4.97) is regular
on Td, that is, the numerator cancels the zero set of the denominator.

Let D(z, λ) =Dg(z, λ)Ds(z, λ), where Dg(z, λ) is the product of all factors Dj of D whose zero sets do not
intersect Td and Ds(z, λ) has the rest of the factors in (4.92). The real variety of Dg in Td is therefore empty.

The subscripts refer to “gap” and “spectrum”. The key observation is that, in order for for R(z, λ)f̂(z) to
cancel the zero set of Ds(z, λ) on Td, it must cancel Ds(z, λ) identically as a Laurent polynomial in z. The
proof of the following theorem is contained in the proof of [25, Theorem 6].

Theorem 7. In order for R(z, λ)f̂(z)/D(z, λ) to be regular on Td, each vector component of R(z, λ)f̂(z)
must have Ds(z, λ) as a factor.

Näıvely, this factorization is accomplished if f̂(z)=Ds(z, λ)f̂0(z) for some f0(z) ∈ C[z±]W . But additional

structure may allow f̂(z) to be chosen so that R(z, λ)f̂(z) has Ds as a factor even if f̂(z) does not.
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4.3.4 Reducibility of BA by symmetry. This section is a generalization of a construction in [40]. A finite

symmetry of A that commutes with Zd yields reducibility of the Bloch variety. Denote a free action G ×
W → W of a finite group G on W by (g, x) ↦ g ⋅x. Thus Zd × G acts on Zd ×W and therefore also on
ℓ2(V) = ℓ2(Zd) ⊗CW by

[(n, g)f](m,y) = f(m � n, g−1y), (4.98)

for allm ∈ Zd, y ∈W and n ∈ Zd, g ∈ G. The vector space CW, as a representation ofG, admits a decomposition
CW = ⊕j∈[1,r]Xj , in which Xj is a direct sum of sj copies of one of the m irreducible representations of G.
This induces an orthogonal decomposition

ℓ2(V) = ℓ2(Zd
) ⊗CW

= ⊕
j∈[1,r]

ℓ2(Zd
) ⊗Xj . (4.99)

Now let A commute also with the G action. Thus A is invariant on each component of the decomposition
(4.99) and may be further decomposable within each of the components ℓ2(Zd)⊗Xj . A can be conceived as
a graph operator as follows. Let Wj be an orthonormal basis for Xj as a vector space over C, and, for each
j ∈ [1, r], define a vertex set

Vj = Zd
×Wj . (4.100)

The set Wj serves as a fundamental domain of the Zd action on Vj , and (4.99) becomes

ℓ2(V) = ⊕
j∈[1,r]

ℓ2(Vj). (4.101)

The operator A is decomposed into its projections onto these subspaces, that is A = ∑j∈[1,r]Aj , where Aj is

the restriction of A to ℓ2(Vj). Under the Floquet transform, we obtain Â(z) = ⊕ Âj(z), and ultimately

D(z, λ) = ∏
j∈[1,r]

Pj(z, λ)
sj , (4.102)

in which Pj(z, λ)
sj ∶= det(Âj(z) − λ). Possible further factorizations of the Pj yield the D̃j above.

4.3.5 Generalized symmetries. Begin with an operator Å on ℓ2(V̊), with dispersion function D̊(z, λ).

Create a new vertex set consisting of s copies (layers) of V̊, that is, V = ⊔j∈[1,s]V̊. We will create a “multilayer”
operator A on

ℓ2(V) = Cs
⊗ ℓ2(V̊). (4.103)

Let {Pj}j∈[1,r] (r ≤ s) be orthogonal projectors onto subspaces of Cs. These subspaces generalize the spaces
Xj above, as they are not necessarily coming from an underlying symmetry of W . Define A by

A = Is ⊗ Å + ∑
j∈[1,r]

Pj ⊗Lj = ∑
j∈[1,r]

Pj ⊗ (Å +Lj), (4.104)

in which the Lj are periodic graph operators on V̊. The image of the projector Pj ⊗ I is an invariant space

of “hybrid states” for A, and A acts on this space by A+Lj , as if it were a “single-layer” operator on ℓ2(V̊),

possibly with multiplicity. Now D(z, λ) has factors Pj(z, λ) = det(Â(z) + L̂j(z) − λI).
A simple case of this construction (see [40]) occurs when all m layers are coupled by one self-adjoint

m ×m matrix K = ∑j∈[1,r] λjPj and Lj = I,

A = Is ⊗ Å +K ⊗ I = ∑
j∈[1,r]

Pj ⊗ (Å + λjI). (4.105)

The dispersion function is D(z, λ) = ∏j∈[1,r]D̊j(z, λ − λj)
sj , so σ(A) is a union of shifts of σ(Å).
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4.3.6 Example: AA-stacked bi-layer graphene. The simplest model of AA-stacked graphene is two
copies of single-layer graphene H0 coupled by a 2×2 interlayer hermitian matrix Γ. Let V0 be the vertex set
for the single layer and D0(z, λ) its dispersion function. Then the AA-stacked model HAA acts in C2⊗ℓ2(V0),

HAA = I2 ⊗H0 + Γ⊗ I. (4.106)

Let Γ = UΛU−1 with U unitary and Λ = diag(µ1, µ2). Then U = U ⊗ I block-diagonalizes HAA, with the
blocks being spectrally shifted copies H0 + µjI of the single layer. Thus the dispersion function for HAA is
reducible,

D(z, λ) =D0(z, λ + µ1)D0(z, λ + µ2). (4.107)

This may be seen in the Bloch variety on the right in Figure 1 (on the next page).

4.3.7 Reducibility of ΦA,λ by contracting edges. The coupling of multiple layers in §4.3.5 can be
generalized to more elaborate coupling graphs, which results in the shifts λj in (4.105) being λ dependent.
This has been worked out for quantum graphs, where the edges are endowed with an ordinary differential
operator in [41, 5] and then for discrete graphs in [42].

Two decoupled layers of Å on ℓ2(V̊) yield the operator I2⊗Å on C2⊗ℓ2(V̊), with vertex set V̊⊔̊V = {1,2}×̊V.
Now, for each pair of “aligned” vertices, say (1, v) and (2, v), create a vertex set Vv containing these two
vertices, and a self-adjoint coupling operator Kv on Vv, ensuring periodicity Kv+̇n = Kv. Then merge these
connecting operators with I2 ⊗ Å to obtain a periodic “bilayer” operator with vertex set ⊔v∈V̊Vv.

Consider now the equation (A−λ)u = f , where f is supported on the vertices V̊⊔V̊. This equation can be
written equivalently by eliminating the extra vertices in Vv, for each v ∈ V̊, by replacing Kv with its Schur
complement. This is a 2×2 matrix indexed by the vertices (1, v) and (2, v) and is a rational function of λ.
Explicitly, write the matrix for Kv−λ in block form, with (1, v) and (2, v) coming first in the ordering,

Kv = [
Av − λ Bv

B∗v Cv − λ
] . (4.108)

The Schur complement is Sv = Av − λ −Bv(Cv − λ)
−1B∗v . If the Kv are the same for all v ∈ V̊, the resulting

contracted operator has the form of (4.105) with m = 2 and Sv taking the place of K. More generally, if
the Kv all commute with each other, then they admit common spectral projections P1 and P2, but the
eigenvalues depend on v periodically; denote them by µv

j for j ∈ {1,2} and v ∈ V̊. The resulting contracted
operator is λ dependent,

Ã(λ) = ∑
j∈[1,2]

Pj ⊗ (Å + ∑
v∈V̊

µv
j (λ)), (4.109)

in which µv
j (λ) is treated as a function of v and acts as an onsite potential. It generalizes λj in (4.105),

which is independent of λ and v.

The Fermi dispersion function can be factored as D(z, λ) = D1(z, λ)D2(z, λ), with Dj(z, λ) = det(
ˆ̊
A(z)+

diagv{µ
v
j (λ)}). Since these factors are polynomial in z and rational functions of λ, the factorization yields

reducibility of the Fermi variety, for each λ that is not a pole, but not for the Bloch variety.
This construction can be done essentially verbatim with m layers.

4.3.8 Reducibility by reduction to one variable. For certain multi-layer graphs not possessing any
symmetry, the Fermi surface may still be reducible. Another mechanism for this occurs when the dispersion
function is a polynomial P (ξ, λ) in a single composite momentum variable ξ = g(z) ∈ C and energy λ, with
g(z) ∈ C[z±]. This means that the Bloch variety factors through the Riemann surface R = {(ξ, λ) ∈ C2 ∶

P (ξ, λ) = 0}. For λ0 ∈C, let Rλ0 denote the finite set of roots ξ of P (ξ, λ0).

(C×)d ×C
z↦ξ
Ð→ C2 P

Ð→ C
B Ð→ R Ð→ 0
Φλ0 Ð→ Rλ0 Ð→ 0

(4.110)

The Fermi surface at energy λ0 is the zero set of

P (ξ, λ0) = ∏
j

(ξ − ξj(λ0)), ξ = g(z). (4.111)
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In this way, the Fermi surface Φλ0 has components Φj
λ0
= {z ∈ (C×)d ∶ g(z) = ξj(λ0)}, which depend on λ0

algebraically, through a multi-valued function on R.
Two types of multi-layer quantum graphs that are reducible by reduction to one variable are introduced

in [18], and the discrete graph version is treated in [42]. The first type relies on a calculus for computing
the dispersion function for the joining of two periodic graphs by merging pairs of vertices, with one vertex
per fundamental domain in each graph. The second relies on the bipartiteness of the layers, each having
∣W ∣ = 2. One deduces, for example, that very general stacking of multiple layers of graphene with arbitrary
shifts, results in a Fermi surface with as many components as the number of layers.

4.3.9 Example: AB-stacked bi-layer graphene. Bi-layer graphene with one layer shifted relative to
the other is called AB-stacked, or Bernal-stacked, graphene. It lies within the class of both types discussed
in §4.3.8. The Fermi surface for the Hamiltonian

A(z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆ ζ ′ γ4ζ
′ 0

ζ ∆ γ1 γ4ζ
′

γ4ζ γ1 −∆ ζ ′

0 γ4ζ ζ −∆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.112)

(written with respect to the basis (1A, 1B, 2A, 2B)) is reducible into two components, coming from the
factorization D(z,E) = D1(z,E)D2(z,E) in C[z±] for each E ∈ C. Each factor Dℓ(z,E) is a polynomial in
ξ = ζζ ′, with ζ = 1+z1 +z2 and ζ ′ = 1+z−11 +z

−1
2 . Physical implications of this reducibility are studied in [33].

Figure 1 shows Bloch varieties for both AB- and AA- stacked bi-layer graphene. They are pertubations of
the doubling of the Bloch variety of graphene (on the right in Equation (4.76)). In the first, the Dirac points

Figure 1: Some Bloch varieties of AB- and AA- stacked bi-layer graphene.

of graphene remain double points, but they are smoothed. For this, the operator is (4.112) with ∆ = γ4 = 0
and γ1 = 1/2. The second is (4.112) with ∆ = 1, γ4 = 0, and γ1 = 2/3. In it, the Dirac points are smoothed
and slightly pulled apart (the faint vertical lines are to help show this). Curiously, the Fermi curve at the
endpoints of the band gap are reducible curves of critical points (see §5.1). The third is AA stacked bi-layer
graphene, and it consists of two shifted copies of the Bloch variety of graphene.

4.3.10 Defect modes in the continuum. A consequence of reducibility of the Fermi surface is the ability
to create a defect state at an energy in the continuous spectrum supported by a local defect, where the state
is exponentially decaying and not compactly supported. This is essentially a converse of [25, Theorem 6].
The equation is

(A + V − λ)u = 0, (4.113)

in which V is a potential operator with finite support, u∈ℓ2(V), and λ∈σ(A).
To create such a defect mode, first solve the local-source equation (A − λ)u = f (4.96). Consider the

example of AB-stacked graphene. Recall from §4.3.3 that, to ensure λ∈σ(A), λ has to be chosen such that

one of the factors Dℓ(z, λ), say D2, vanishes at some z ∈ T2. To satisfy u ∈ ℓ2(V), the vector R(z, λ)f̂(z)
must have D2(z, λ) as a factor in each component. In order to satisfy the additional requirement that u does

not have compact support, D1 must not vanish anywhere on T2 and R(z, λ)f̂(z) cannot have D1 as a factor
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in each component. Thus û is a smooth rational function on T2 so that u is properly exponentially decaying.
Then put f = −V u to obtain (4.113). Since f has compact support, this amounts to a finite-dimensional
system for V . If u vanishes at some x ∈ V, then V cannot be purely on-site; however generally one can
find a local potential operator V that works, as demonstrated in [18, 33]. Embedded eigenvalues created by
non-compactly supported potentials require other techniques; see [28, 21] for results in one dimension.

4.3.11 Localization of the defect. Let us continue the AB-stacked graphene example. As described at

the end of §4.3.3, having a factor of D2(z,E) in each component of the vector R(z, λ)f̂(z) can be achieved

näıvely if f̂(z) =D2(z, λ)f̂0(z) for some f0(z) ∈ C[z±]W . This means that f and therefore V generically
would be nonzero on 28 vertices (D2 has seven monomial terms and there are four vertices in a fundamental

domain W ). However, it is desirable to seek f̂(z) with the minimal number of monomial terms in all
components. This corresponds to a source f having minimal support.

For the Hamiltonian 4.112, it is shown in [33] there is a non-obvious matrix factorization U(Â(z)−λI)L =
Λ, with U and L being block upper and lower matrices in an appropriate basis, and Λ being essentially a 2×2
matrix with a special form. Remarkably, the eigenvectors ϕℓ of Λ are independent of z and its eigenvalues
happen to be Dℓ. Furthermore, ϕℓ and Uϕℓ have nonzero components only in the aligned pair of A and B
vertices ofW . Therefore, taking f̂ = ϕ1 results in û = (Â(z)−λI)−1f̂ = LΛ−1Uf̂ having poles on D1(z, λ) = 0,

which by assumption does not intersect T2. Since f̂ is independent of z and has two non-zero components,
f is supported on two vertices. The details are in [33], including a formula for the values of V on the two
aligned AB vertices.

4.3.12 Irreducible Fermi varieties. Although näıvely the Fermi variety of a discrete periodic operator
(with d ≥ 2) should be generically irreducible, proving irreducibility is not straightforward. Compared with
proving reducibility, the techniques are different; this is because reducibility arises constructively by creating
graphs, typically through multiple layers, that are explicitly designed to be algebraically reducible.

Although there may be no crisp way to define when a periodic graph has multiple layers, for d = 2 it is
reasonable to consider a planar graph to be a single layer. When ∣W ∣ = 2 and the graph is planar, reducibility
of the Fermi variety occurs only for the tetrakis grid, and positivity of the matrix elements of the operator
always prohibits reducibility. This is proved by computational means [27].

Liu [29] proved irreducibility of the discrete Laplacian plus a periodic potential at every energy (except
one when d = 2), from which is inferred generic reduction of the dimension of the Fermi variety at band
edges. More generally, let A be a Zd periodic operator on Zd so that Â(z) is scalar, and let V ∶ Zd → C
be a potential function that is periodic with respect to a sublattice q1Z × ⋅ ⋅ ⋅ × qdZ. Irreducibility of the
Bloch variety, but not necessarily the Fermi varieties, of A + V occurs under a condition connecting Â(z)
and the periods qj [14]. By bounding the number of irreducible components in terms of certain asymptotics
of D(z, λ), irreducibility can be established for a wider swath of examples [15].

4.3.13 Isospectrality. There are some results about the information that the Bloch and Fermi varieties

contain. For Schrödinger operators on Zd equal to the discrete Laplacian plus a potential that is periodic
with a rectangular fundamental domain, the density of states determines the Bloch variety [3]. Liu introduces
Fermi isospectrality [31, 32] of two such potentials when the associated Schrödinger operators have the same
Fermi variety for some energy λ. For d ≥ 3, if two potentials are Fermi-isospectral either both are additively
separable or neither is. In the former case, the one-variable summands are essentially Fermi-isospectral, which
also holds for d = 2. There exist complex potentials that are Floquet-isospectral to the zero potential [10].

5 Nondegeneracy of band edges and beyond

A property of the spectrum revealed by the Bloch variety is its behavior near edges of spectral bands. The
spectral edges conjecture about this behavior leads to a deeper study of Bloch varieties.
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5.1 Spectral edges nondegeneracy conjecture

The real Bloch variety RBA ⊂ Td × R of a periodic graph operator A encodes the relation between the
characters z ∈ Td of the Zd-action and the spectrum λ ∈ R of the operator (cf. §4). Its projection to R is the
spectrum σ(A) of A which consists of intervals (spectral bands) each of which is an image of one of the ∣W ∣
branches (band functions) of RBA over Td. Endpoints (spectral edges) of spectral bands are the images of
extrema of the corresponding band function of RBA. Many important notions in physics, including effective
mass in solid state physics, the Liouville property, Green’s function asymptotics, Anderson localization, and
homogenization, require that those extrema are nondegenerate in that the Hessian matrix has full rank.
Kuchment noted that this assumption is largely unproven and posed the spectral edges conjecture [24, Conj.
5.25]. This posits that for generic parameters (potential and edge labels), each extreme value is attained by
a single band function and the extrema are all isolated and nondegenerate. It is stated and disucssed when
d = 2 for continuous operators in [34].

While posed for all periodic operators (discrete and continuous), it remains largely open, even for discrete
operators. In this setting, “generic” means avoiding an algebraic subset of the parameters. This conjecture
does not always hold. We have already seen an instgance of this in Figure 1. The simplest nontrivial
counterexample is due to Filonov and Kachkovskiy in [16, §7]. We give a slightly more involed example.
Figure 2 shows a Z2-periodic graph with five (orbits of) edges, a labeling, and a Bloch variety when the
potential is not constant, but b = d and c = e. This has eight isolated critical points and two curves of
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Figure 2: Filonov-Kachkovskiy Bloch variety with a curve of critical points.

critical points (the corresponding Fermi variety is defined by a+ b(x+ x−1) + c(y + y−1)), each lying over the
edges of the spectral gap. In particular, for pure Schrödinger operators (a = ⋯ = e = 1) the spectral edges
nondegeneracy conjecture fails. When b ≠ d or c ≠ e, all critical points are isolated.

About the same time as [16], Parnovski and Shterenberg found higher-dimensional examples [34, Rem.
4.1], as did Filanov and Kachkovskiy [17]. Flat bands (e.g. the Lieb lattice (4.91)) give other examples
with non-isolated critical points. These examples all involve algebraic subsets of the full set of parameters.
For general values of the parameters, all critical points are isolated and nondegenerate. A more subtle
counterexample is the middle Bloch variety of (4.76)—over each edge of the gap there are two nondegenerate
critical points. (A version of the spectral edges conjecture posits that each extrema is attained at a unique
point on the Bloch variety.) This occurs whenever the parameters a, b, c (see (3.47)) are the sides of a
triangle [37].

For a positive result, Liu [30] proved that the extrema are isolated for the Schrödinger operator acting
on the square lattice.

5.2 Nondegeneracy of critical points

The Spectral Edges Conjecture is discussed in [9], which introduces a computational method to study it. Ex-
trema of bands of the real Bloch variety are some (but not all) of the critical points of the coordinate function
λ on the complex Bloch variety BA. A strengthening of the spectral edges conjecture is the nondegeneracy
conjecture—that every critical point of λ on BA is nondegenerate. We have the following dichotomy.

Theorem 8 ([9, Thm. 12]). For a given graph Γ, there is a dense open subset U in the space of parameters for
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Γ with the property that either all operators on Γ with parameters in U have all critical points nondegenerate,
or every such operator has degenerate critical points.

This is because there is a system of polynomial equations (5.114) involving the parameters that define
the critical points (the critical point equations) and a further equation (determinant of the Hessian) that
defines the degenerate critical points. Consequently, the set V of of parameters whose corresponding Bloch
variety has a degenerate critical point is constructable. If V is not dense, then U is an open subset of its
complement and operators in U have all critical points nondegenerate. If V is dense, then U is an open
subset of V and generic operators have degenerate critical points.

5.3 Critical point degree

The algebraic nature of the set of critical points and standard facts in algebraic geometry imply that given
a graph Γ, there is a number N(Γ) and a open dense subset U of the parameters for Γ with the following
properties: Every operator on Γ has at most N(Γ) isolate critical points, and if the operator has parameters
from U , then it has has exactly N(Γ) critical points. This number N(Γ) is called the critical point degree of
Γ [12].

As explained in [9, §5], if there exists one operator on Γ with N(Γ) nondegenerate critical points, then
the nondegeneracy conjecture holds for Γ. Consequently, if N(Γ) is known, then a single computation
can establish the nondegeneracy conjecture for Γ. This is used to prove [9, Thm. 16] and to establish the
nondegeneracy conjecture for over 219 graphs in [13].

The paper [13] studies the critical points of a periodic operator, giving bounds and conditions which
imply the bounds are met. A standard formulation of critical points of implicit functions from algebraic
optimization gives the following system of equations for the critical points of λ on the Bloch variety,

D(z, λ) = z1
∂D

∂z1
(z, λ) = ⋯ = zd

∂D

∂zd
(z, λ) = 0 . (5.114)

(As z ∈ (C×)d, multiplying by zi does not add solutions.) A monomial znλj is an eigenvector for the Euler
operator zi

∂
∂zi

with eigenvalue ni. Thus, the exponents (n, j) of monomials znλj that occur in each of the

Critical Point Equations (5.114) are a subset of those that occur in D(z, λ), called its support.

5.4 Toric compactification

Let N(A) ⊂ Rd+1 be the convex hull of the support of the dispersion function D(z, λ) for the operator
A. This is the Newton polytope of D(z, λ). Figure 3 shows Newton polytopes of general operators on the
hexagonal and Lieb lattices, the graph of Figure 2, and another graph with ∣W ∣ = 3. A classical result of

Figure 3: Four Newton polytopes

Kushnirenko [22] gives the following bound for the number of critical points.

Theorem 9 ([13, Cor. 2.5]). The number of isolated critical points of the function λ on the Bloch variety
BA is at most (d + 1)!vol(N(A)).
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An analysis of the proof (or of [4, Thm. B]) gives conditions for this bound to be sharp. Given a face
F of the Newton polytope N(A), the (sum of) the terms of D(z, λ) whose monomials lie on F is the facial
form DF (z, λ)—this is a strict generalization of the notion of terms of highest degree. Similarly, the facial
subsystem (CPE)F of the Critical Point Equations (5.114) is the collection of facial forms of the equations
in (5.114). The following is a consequence of [13, Cor. 3.5].

Theorem 10. The inequality in Theorem 9 is an equality if and only if for every face F of N(A) that is
not its base, the facial subsystem (CPE)F has no solutions.

Solutions to a facial subsystem (CPE)F are asymptotic critical points. These are studied in [12, 13]. If a
face F is vertical (as in the second and fourth polytopes in Figure 3, then (CPE)F has solutions. For a face
F that is not vertical, there are asymptotic critical points if and only if the variety defined by DF (z, λ) is
singular. In [12] such asymptotic critical points for general operators on a graph Γ are shown to arise from
structural properties of Γ.

5.5 More on toric compactification

The introduction and use of facial forms and subsystems in [12, 13], as well as the use of the component
of D(z, λ) of lowest degree in [14], are all algebraic manifestations of a natural toric compactification of
BA ⊂ (C×)d ×C. This notion was introduced by Gieseker, Knörrer, and Trubowitz [19] (see also [35]) in their
study of the square lattice Z2 under the free action of aZ⊕ bZ, and extended by Bättig [1, 2]. We sketch a
modern view developed in [11].

Given a polytope N ⊂ Rr with vertices in Zr, there is a projective toric variety [6] XN lying in a projective
space P(N) whose coordinates correspond to the integer points in A ∶= N ∩ Zr. (The space P(N) is the
quotient of CA ∖ {0} by scalars. It is a compact complex manifold.) There is a map φ∶ (C×)r → P(N) that
sends a point x ∈ (C×)r to the vector (xa ∣ a ∈ A) of monomials, and XN is the closure of its image. This
has the important geometric consequence (which is the idea behind Kushnirenko’s Theorem) that under φ,
linear functions on P(N) correspond to polynomials on (C×)r with support in N , and the degree of XN is
r!vol(N). Lastly, the difference XN ∖ φ((C×)r) is a union of toric subvarieties XF , one for each face F of
N .

In our context, let BA be the closure of φ(BA) in XN(A). Then for each face F of N(A), the facial form

DF (z, λ) defines BA∩XF , which we regard as the asymptotic Bloch variety along XF . Similarly, asymptotic
critical points are those that lie along some XF , for F not the base of N(A) (the base corresponds to λ = 0).

A first step to generalize [1, 2, 19] is to extend the vector bundle E to XN(A)—it remains a trivial bundle.

The endomorphism Â(z)−λIW similarly extends to the bundle E over XN(A) with kernel the Floquet sheaf

F on XN(A) whose support is the compactified Bloch variety BA. This may always be done.
In his work on the square lattice, Bättig [1, 2] does more. For every face F of N(A) he associates a

periodic, labeled, directed graph ΓF whose operator AF has Bloch variety equal to BA ∩XF . The paper [11]
investigates to what extent this may be done for a general graph Γ. When N(A) is the pyramid ∣W ∣⋅P , where
P is the convex hull of all entries in the matrix Â(z) − λIW , then the full package of Bättig—asymptotic
spectral problems for each face of N(A)—holds. Only the third Newton polytope in Figure 3 has this form.
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