[BB]
| R. Brockett and C. Byrnes,
Multivariable Nyquist criteria,
root loci and pole placement: A geometric viewpoint , IEEE
Trans. Automat. Control., AC-26 (1981), 271-284.
|
[BFZ]
| A. Berenstein, S. Fomin, and A. Zelevinsky,
Parametrizations of canonical bases and totally
positive matrices.
Adv. Math., 122 (1996), 49-149.
|
[By]
| C. Byrnes,
Pole assignment by output feedback, in
Three Decades of Mathematical Systems Theory, H. Nijmeijer and
J. M. Schumacher, eds.,
vol. 135 of Lecture Notes in Control and Inform. Sci., Springer-Verlag,
Berlin, 1989, pp. 31-78.
|
[D]
| P. Deitmaier,
The Stewart-Gough platform of general geometry can
have 40 real postures, in Advances in Robot Kinematics:
Analysis and Control, Jordan Lenancic, and Manfred Husty, eds., Kluwer,
1998, pp. 1-10.
|
[EH]
| D. Eisenbud and J. Harris,
Divisors on general curves and cuspidal
rational curves, Invent. Math., 74 (1983), pp. 371-418.
|
[EG]
| A. Eremenko and A. Gabrielov,
Rational functions with real critical points and
B. and M. Shapiro conjecture in real enumerative geometrys,
Mss., December 1999.
|
[FRZ]
| J.-C. Faugère, Fabrice Rouillier, and Paul Zimmermann,
Private communication, 1998.
|
[Fu]
| W. Fulton,
Introduction to Intersection Theory in Algebraic
Geometry, CBMS 54, AMS, 1996. second edition.
|
[G-VRRT]
| L. Gonzalez-Vega, F. Rouillier, M.F. Roy, and G. Trujillo,
Symbolic Recipes for Real Solutions,
in Some Tapas of Computer Algebra,
A.M. Cohen, H. Cuypers, and H. Sterk, eds., Springer-Verlag, 1999.
pp. 34-65.
|
[HP]
| W.V.D. Hodge and D. Pedoe,
Methods of Algebraic Geometry, Volume
II, Cambridge University Press, 1952.
|
[HSS]
| B. Huber, F. Sottile, and B. Sturmfels,
Numerical Schubert Calculus,
J. Symb. Comp., 26 (1998), pp. 767-788.
|
[Kh]
| V. Kharlamov,
Private communication.
|
[Kl]
| S. Kleiman,
The transversality of a general translate,
Comp. Math., 28 (1974), pp. 287-297.
|
[Lö]
| C. Löwner,
On totally positive matrices,
math. Zeitschr., 63 (1955), pp. 266-267.
|
[RTV]
| F.Ronga, A.Tognoli, and T.Vust,
The number of conics tangent to 5
given conics: the real case, Rev. Mat. Univ. Complut. Madrid,
10 (1997), pp. 391-421.
|
[RS]
| J. Rosenthal and F. Sottile,
Some remarks on real
and complex output feedback, Sys. and Control Lett., 33 (1998),
pp. 73-80.
Documentation of the
system we found that is not
controllable with real output feedback
|
[Sc]
| H. Schubert,
Beziehungen zwischen den linearen Räumen
auferlegbaren charakteristischen Bedingungen,
Math. Ann., 38 (1891), pp. 588-602.
|
[So94]
| F. Sottile,
Real Enumerative Geometry for the Grassmannian of Lines
in Projective Space, Ph.D. Thesis, University of Chicago, 1994.
|
[So96]
|
,
Pieri's
formula for flag manifolds and Schubert polynomials,
Annales de l'Institut Fourier, 46 (1996), pp. 89-110.
|
[So97a]
|
,
Enumerative
geometry for the real Grassmannian of lines in projective space,
Duke Math. J., 87 (1997),
pp. 59-85.
|
[So97b]
|
,
Real enumerative
geometry and effective algebraic equivalence, J. Pure
Appl. Alg., 117 & 118 (1997), pp. 601-615. Proc., MEGA'96.
|
[So97c]
|
,
Enumerative
geometry for real varieties, in Algebraic
Geometry, Santa Cruz 1995, J. Kollár, R. Lazarsfeld, and D. Morrison,
eds., vol. 62, Part 1 of Proc. Sympos. Pure Math., Amer. Math. Soc., 1997,
pp. 435-447.
|
[So98]
|
,
Real Scubert
calculus: Polynomial systems and
a conjecture of Shapiro and Shapiro, Experimental
Mathematics, to appear. 1998.
|
[So99]
|
,
The Special
Schubert calculus is real,
ERA of the AMS, 5 (1999), 35-39.
|
[So00a]
|
,
Real Rational
Curves in Grassmannians,
J. Amer. Math. Soc.
13 (2000), 333-341.
|
[So00b]
|
,
Some real and unreal enumerative geometry for flag
manifolds, Michigan Math.J., to appear, 2000.
|
[St]
| B. Sturmfels,
Polynomial equations and convex polytopes,
Amer. Math. Monthly, 105, (1998), 907--922.
|
[V]
| J. Verschelde,
Numerical evidence for a conjecture in real
algebraic geometry,
Experimental Mathematics, to appear. 1998.
|