Up:    Overview

Papers related to the Shapiro Conjecture

[EG1] A. EREMENKO AND A. GABRIELOV, Rational functions with real critical points and B. and M. Shapiro conjecture in real enumerative geometry. Annals of Math., 155 (2002), pp. 105-129.
[EG2] _____________, Degrees of real Wronski Map. Discrete and Computational Geometry, 28 (2002), pp. 331-347.
[HSS] B. HUBER, F. SOTTILE, AND B. STURMFELS, Numerical Schubert calculus, J. Symb. Comp., 26 (1998), pp. 767-788.
[KS] V. KHARLAMOV AND F. SOTTILE, Maximally inflected real rational curves. math.AG/0206268, 2002.
[SS] B. SHAPIRO and V. SEDYKH, Two conjectures on convex curves. math.AG/0208218.
[So1] F. SOTTILE, The conjecture of Shapiro and Shapiro. An archive of computations and computer algebra scripts, http://www.expmath.org/extra/9.2/sottile, 1999.
[So2] _________, The special Schubert calculus is real, ERA of the AMS, 5 (1999), pp. 35-39.
[So3] _________, Real rational curves in Grassmannians, J. Amer. Math. Soc., 13 (2000), pp. 333-341.
[So4] _________, Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro, Exper. Math., 9 (2000), pp. 161-182.
[So5] _________, Some real and unreal enumerative geometry for flag manifolds, Mich. Math. J., 48 (2000), pp. 573-592. Special Issue in Honor of Wm. Fulton.
[So6] _________, Rational curves in Grassmannians: systems theory, reality, and transversality. to appear in Advances in Algebraic Geometry Motivated by Physics, ed. by E. Previato, Contemporary Math. 276, 2001, pp. 9-42.
[So7] _________, Elementary Transversality in the Schubert calculus in any Characteristic. www.arXiv.org/math.AG/0010319, Mich. Math. J., to appear.
[ST] F. SOTTILE and T. THEOBALD, Real lines tangent to 2n-2 quadrics in Rn.
[V] J. VERSCHELDE, Numerical evidence of a conjecture in real algebraic geometry. Exper. Math., 9 (2000), pp. 183 - 196.


Up:    Overview