Up:    Table of Contents

Bibliography

[EH] D. EISENBUD J. HARRIS, Divisors on general curves and cuspidal rational curves. Invent. Math., 74 (1983), pp. 371-418.
[EG00] A. EREMENKO AND A. GABRIELOV, Rational functions with real critical points and B. and M. Shapiro conjecture in real enumerative geometry. Annals of Math., 155 (2002), pp. 105-129.
[PW] H. POTTMANN and J. WALLNER, Computational Line Geometry. Springer-Verlag, 2001.
[So_WWW] F. SOTTILE, The conjecture of Shapiro and Shapiro. An archive of computations and computer algebra scripts, http://www.expmath.org/extra/9.2/sottile, 1999.
[So99] _________, The special Schubert calculus is real, ERA of the AMS, 5 (1999), pp. 35-39.
[So00a] _________, Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro, Exper. Math., 9 (2000), pp. 161-182.
[So00b] _________, Some real and unreal enumerative geometry for flag manifolds, Mich. Math. J., 48 (2000), pp. 573-592. Special Issue in Honor of Wm. Fulton.
[V] J. VERSCHELDE, Numerical evidence of a conjecture in real algebraic geometry. Exper. Math., 9 (2000), pp. 183 - 196.


Up:    Table of Contents