[Be] |
D. N. BERNSTEIN, The number
of roots of a system of equations, Funct. Anal. Appl., 9
(1975), pp. 183-185. |
|
|
[BGG] |
I. N. BERNSTEIN, I. M. GELFAND, AND
S. I. GELFAND,
Schubert cells
and cohomology of the spaces G/P, Russian
Mathematical Surveys, 28 (1973), pp. 1-26. |
[Ber] |
A. BERTRAM, Quantum Schubert calculus,
Adv. Math., 128 (1997), pp. 289-305. |
[Br] |
R. BRICARD, Mémoire sur la théorie de
l'octaèdre articulé, J. Math. Pures et Appliquées, 3
(1897), pp. 113-150. |
[BCS] |
P. BURGISSER, M. CLAUSEN, AND
M. SHOKROLLAHI, Algebraic Complexity
Theory, Springer-Verlag, 1997. |
[COGP] |
P. CANDELAS, X. C. DE LA
OSSA, P. S. GREEN, AND
L. PARKES, A pair of
Calabi-Yau
manifolds as an exactly soluble superconformal theory, Nuclear
Phys. B, 359 (1991), pp. 21-74. |
[Ca] |
G. CASTELNUOVO, Numero delle
involuzioni
razionali gaicenti sopra una curva di dato genere,
Rendi. R. Accad. Lineci, 4 (1889), pp. 130-133. |
[CE-C] |
R. CHIAVACCI AND
J. ESCAMILLA-CASTILLO,
Schubert calculus and
enumerative problems, Bollettino Un. Math. Ital., 7 (1988),
pp. 119-126. |
[Cl] |
J. CLARK, The consistent
selection of local coordinates in linear system
identification, in Proc. Joint Automatic Control
Conference, 1976, pp. 576-580. |
[CK] |
D. A. COX AND S. KATZ, Mirror symmetry and algebraic geometry, American
Mathematical Society, Providence, RI, 1999. |
[Co] |
H. S. M. COXETER, The
twenty-seven lines on the cubic surface, in Convexity and its
applications, Birkhäuser, Basel, 1983, pp. 111-119. |
[DK] |
A. I. DEGTYAREV AND
V. M. KHARLAMOV, Topological properties of real algebraic varieties:
Rokhlin's way, Uspekhi Mat. Nauk, 55 (2000),
pp. 129-212. |
[De] |
M. DEMAZURE, Désingularization des variétés de Schubert
généralisées, Ann. Sc. E. N. S. (4), 7 (1974),
pp. 53-88. |
[Di] |
P. DIETMAIER, The
Stewart-Gough platform of general geometry can have 40 real
postures, in Advances in Robot Kinematics: Analysis and
Control, Kluwer Academic Publishers, 1998, pp. 1-10. |
[EH] |
D. EISENBUD AND J. HARRIS,
Divisors on general curves and cuspidal
rational curves, Invent. Math., 74 (1983), pp. 371-418. |
[EG1] |
A. EREMENKO AND A. GABRIELOV,
Rational functions with real critical
points and B. and M. Shapiro conjecture in real enumerative
geometry. Annals of Mathe., 155 (2002), pp. 105-129. |
[EG2] |
_____________, Degrees of real
Wronski Mape. Discrete and Computational Geometry, to appear. |
[Fu1] |
W. FULTON, Intersection
Theory, no. 2 in Ergebnisse der Math., Springer-Verlag,
1984. |
[Fu2] |
_________, Introduction to Intersection Theory in
Algebraic Geometry, CBMS 54, AMS, 1996. second edition. |
[FP] |
W. FULTON AND R. PANDHARIPANDE,
Notes on stable maps and quantum
cohomology. in Algebraic Geometry, Santa Cruz, 1995,
J. Kollár, ed., vol. 62, Part 2 of Proc. Sympos. Pure
Math., Amer. Math. Soc., 1997, pp. 45-96. |
[Gi] |
G. GIAMBELLI, Rizoluzione del
problema degli spazi secanti, Memor. Real. Acc. di Torino, 52
(1902), pp. 171-193. |
[Gol] |
L. GOLDBERG, Catalan numbers
and branched coverings by the Riemann sphere, Adv. Math., 85
(1991), pp. 129-144. |
[Gou] |
V. GOUGH, Contribution to
discussion papers on research in automobile stability and control in
tyre performance, 1957. |
[Haa] |
B. HAAS, A counterexample to
Kouchnirenko's conjecture. Beitr. Alg. Geom., 43,
(2002), pp. 1-8. |
[Harn] |
A. HARNACK, Über die
Vieltheiligkeit der eben algebraischen Kurven, Math. Ann., 10
(1876), pp. 189-198. |
[Harr] |
J. HARRIS, Galois groups of
enumerative problems, Duke Math. J., 46 (1979),
pp. 685-724. |
[Hi1] |
D. HILBERT, Über die
Darstellung definiter Formen als Summe von Formen-quadraten,
Math. Ann., 32 (1888), pp. 342-350. |
[Hi2] |
_________, Über die reellen
Züge algebraischen Curven, Math. Ann., 38 (1891),
pp. 115-138. |
[Hi3] |
_________, Sur les
problèmes futurs des mathématiques, in Proceedings
of the Second International Congress of Mathematicians, Paris 1900,
Gauthier-Villars, 1902, pp. 58-114. |
[HSS] |
B. HUBER,
F. SOTTILE, AND
B. STURMFELS, Numerical
Schubert calculus, J. Symb. Comp., 26 (1998),
pp. 767-788. |
[HS] |
B. HUBER AND B. STURMFELS,
A polyhedral method for solving sparse
polynomial systems, Math. Comp., 64 (1995), pp. 1541-1555. |
[HV] |
B. HUBER AND J. VERSCHELDE,
Pieri homotopies for problems in
enumerative geometry applied to pole placement in linear systems
control, SIAM J. Control and Optim., 38 (2000),
pp. 1265-1287. |
[Hu] |
J. HUISMAN, On the number of
real hypersurfaces hypertangent to a given real space curve.
Illinois Journal of Math., to appear. |
[In] |
K. INTRILIGATOR, Fusion
residues, Mod. Phys. Lett. A, 6 (1991), pp. 3543-3556. |
[IR] |
I. ITENBERG AND M.-F. ROY, Multivariate Descartes' rule,
Beiträge zur Algebra und Geometrie, 37 (1996), pp. 337-346. |
[Ka] |
S. KATZ, On the finiteness of
rational curves on quintic threefolds, Compositio Math., 60
(1986), pp. 151-162. |
[KS] |
V. KHARLAMOV AND F. SOTTILE,
Maximally inflected real rational
curves. math.AG/0206268, 2002. |
[Kh1] |
A. KHOVANSKII, Newton
polyhedra and the genus of complete intersections,
Funct. Anal. Appl., 12 (1978), pp. 38-46. |
[Kh2] |
__________, Fewnomials, Trans.
of Math. Monographs, 88, AMS, 1991. |
[Kl1] |
S. L. KLEIMAN, The
transversality of a general translate, Compositio Math., 28
(1974), pp. 287-297. |
[Kl2] |
__________, Problem 15. Rigorous foundation of
Schubert's enumerative calculus, in Mathematical Developments
arising from Hilbert Problems, vol. 28 of Proc. Sympos. Pure Math.,
Amer. Math. Soc., 1976, pp. 445-482. |
[Klein] |
F. KLEIN, Eine neue Relation
zwischen den Singularitäten einer algebraischen Kurve,
Math. Ann., 10 (1876), pp. 199-209. |
[Ko] |
A. KUSHNIRENKO, A Newton
polyhedron and the number of solutions of a system of k equations in
k unknowns, Usp. Math. Nauk., 30 (1975), pp. 266-267. |
[Kr] |
L. KRONECKER, Leopold
Kronecker's Werke, Chelsea, NY, 1968. |
[Lar] |
D. LARMAN. Problem posed in the Problem Session of
the DIMACS Workshop on Arrangements, Rutgers University, New Brunswick,
NJ, USA, 1990. |
[Laz] |
D. LAZARD, Generalized Stewart
platform: how to compute with rigid motions?, in IMACS-SC'93,
1993. |
[LRW] |
T. Y. LI, J. M. ROJAS, AND
X. WANG, Trinomials in
the plane. 2001. |
[LW] |
T. Y. LI AND X. WANG, On multivariate Descartes' rule--a
counterexample, Beiträge Algebra Geom., 39 (1998),
pp. 1-5. |
[MPT] |
I. MACDONALD, J. PACH, AND
T. THEOBALD, Common
tangents to four unit balls in R3.
Discrete and Computational Geometry 26
(2001), pp. 1-17. |
[Me] |
G. MEGYESI, Lines tangent to 4
spheres with affinely dependent centres.
Discrete and Computational Geometry 26 (2001), pp. 493-497. |
[Mo1] |
B. MOURRAIN, The 40 generic
positions of a parallel robot, in ISSAC'93, Kiev, ACM Press,
1993, pp. 173-182. |
[Mo2] |
___________, Enumeration problems in geometry,
robotics, and vision, in Algorithms in Algebraic Geometry and
Applications (MEGA-94, Santander), L. González-Vega and
T. Recio, eds., vol. 143 of Progress in Math.,
Birkhäuser, 1996, pp. 285-306. |
[Na] |
D. NAPOLETANI, A power
function approach to Kouchnirenko's conjceture.
in Symbolic Computation: solving equations in algebra, geometry, and
engineering (South Hadley, MA 2000), pp. 99-106,
Contemporary Math. 286, AMS, 2001. |
[PS] |
P. PEDERSEN AND B. STURMFELS,
Mixed monomial bases, in Algorithms
in Algebraic Geometry and Applications, L. González-Vega and
T. Recio, eds., vol. 143 of Progress in Mathematics,
Proceedings, MEGA-94, Birkhäuser, 1996, pp. 307-316. |
[Pi] |
M. PIERI, Sul problema degli
spazi secanti, Rend. Reale Ist. lombardo, 26 (1893),
pp. 534-546. |
[PR] |
V. POWERS AND B. REZNICK,
Notes towards a constructive proof of
Hilbert's theorem on ternary quartics, in
Quadratic forms and their applications (Dublin, 1999),
Amer. Math. Soc., Providence, RI,
2000, pp. 209-227. |
[Ra] |
M. RAGHAVAN, The Stewart
platform of general geometry has 40 configurations, in ASME
Design and Automation Conf., vol. 32-2, 1991, pp. 397-402. |
[RRW] |
M. RAVI, J. ROSENTHAL, AND
X. WANG, Degree of the
generalized Plücker embedding of a quot scheme and quantum
cohomology, Math. Ann., 311 (1998), pp. 11-26. |
[RTV] |
F. RONGA, A. TOGNOLI, AND
T. VUST, The number of
conics tangent to 5 given conics: the real case,
Rev. Mat. Univ. Complut. Madrid, 10 (1997), pp. 391-421. |
[RV] |
F. RONGA AND T. VUST, Stewart platforms without computer?, in
Real Analytic and Algebraic Geometry, Proceedings of the International
Conference, (Trento, 1992), Walter de Gruyter, 1995, pp. 196-212. |
[Sch1] |
H. SCHUBERT, Kalkul der
abzählenden Geometrie, Springer-Verlag, 1879.
reprinted with an introduction by S. Kleiman, 1979. |
[Sch2] |
__________, Anzahl-Bestimmungen für lineare
Räume beliebiger Dimension, Acta. Math., 8 (1886),
pp. 97-118. |
[Sch3] |
__________, Die n-dimensionalen
Verallgemeinerungen der fundamentalen Anzahlen unseres Raume,
Math. Ann., 26 (1886), pp. 26-51. (dated 1884). |
[Sch4] |
__________, Losüng des
Charakteritiken-Problems für lineare Räume beliebiger
Dimension, Mittheil. Math. Ges. Hamburg, (1886),
pp. 135-155. (dated 1885). |
[ST] |
B. SIEBERT AND G. TIAN, On quantum cohomology rings of Fano manifolds and a formula
of Vafa and Intrilligator, Asian J. Math., 1 (1997),
pp. 679-695. |
[So1] |
F. SOTTILE, Enumerative
geometry for the real Grassmannian of lines in projective
space, Duke Math. J., 87 (1997), pp. 59-85. |
[So2] |
_________, Real enumerative geometry and
effective algebraic equivalence, J. Pure Appl. Alg., 117
& 118 (1997), pp. 601-615. Proc., MEGA'96. |
[So3] |
_________, Enumerative geometry for real
varieties, in Algebraic Geometry, Santa Cruz 1995,
J. Kollár, R. Lazarsfeld, and D. Morrison,
eds., vol. 62, Part 1 of Proc. Sympos. Pure Math.,
Amer. Math. Soc., 1997, pp. 435-447. |
[So4] |
_________, The conjecture of Shapiro and
Shapiro. An archive of computations and computer algebra
scripts, http://www.expmath.org/extra/9.2/sottile, 1999. |
[So5] |
_________, The special Schubert calculus is
real, ERA of the AMS, 5 (1999), pp. 35-39. |
[So6] |
_________, Real rational curves in
Grassmannians, J. Amer. Math. Soc., 13 (2000),
pp. 333-341. |
[So7] |
_________, Real Schubert calculus: Polynomial
systems and a conjecture of Shapiro and Shapiro,
Exper. Math., 9 (2000), pp. 161-182. |
[So8] |
_________, Some real and unreal enumerative
geometry for flag manifolds, Mich. Math. J., 48 (2000),
pp. 573-592. Special Issue in Honor of Wm. Fulton. |
[So9] |
_________, Elementary transversality in the
Schubert calculus for arbitrary characteristic.
www.arXiv.org/math.AG/0010319, 2001. |
[So10] |
_________, Rational curves in Grassmannians:
systems theory, reality, and transversality. to appear in
Advances in Algebraic Geometry Motivated by Physics, ed. by
E. Previato, Contemporary Math. 276, 2001, pp. 9-42. |
[So11] |
_________, Some real and unreal conjectures on
enumerative geometry for flag manifolds. In preperation, 2001. |
[STh] |
F. SOTTILE AND T. THEOBALD,
Common tangent lines to 2n-2 spheres in
Rn.
Trans. Amer. Math. Soc., to appear.
www.arXiv.org/math.AG/0105180, 2001. |
[Ste] |
D. STEWART, A platform with 6
degree of freedom, Proc. of the Institution of Mechanical
Engineers, 180 (1965-66), pp. 371-386. |
[Stu1] |
B. STURMFELS, On the number of
real roots of a sparse polynomial system, in Hamiltonian and
gradient flows, algorithms and control, vol. 3 of Fields
Inst. Commun., American Mathematical Society, Providence, 1994,
pp. 137-143. |
[Stu2] |
__________, Viro's theorem for complete
intersections, Ann. della Scuola Nor. Sup. Pisa, Sc. Fis. Mat.,
Ser. IV, XXI (1994), pp. 377-386. |
[Va] |
C. VAFA, Topological mirrors
and quantum rings, in Essays on Mirror Manifolds, S.-T. Yau, ed.,
International Press, Hong Kong, 1992, pp. 96-119. |
[Ve] |
J. VERSCHELDE, Polyhedral
homotopies for dense, sparse, and determinantal systems.
MSRI preprint 1999-041, 1999. |
[Vi] |
O. VIRO, Real algebraic plane
curves: Constructions with controlled topology, Algebra i
Analiz, 1 (1989), pp. 1-73. Translation in Leningrad Math. J.,
1 (1990), pp. 1059-1134. |
[Wa] |
C. WALL, Is every quartic a
conic of conics?, Math. Proc. Cambridge Philos. Soc., 109
(1991), pp. 419-424. |
[Wh] |
D. WHITE, Sign-balanced
posets. Preprint, Feb. 11, 2000 at
white@math.umn.edu. |
[Ze1] |
H. G. ZEUTHEN, Almindelige
Egenskaber ved Systemer af plane Kurver, Danske
Videnskabernes Selskabs Skrifter, Naturvidenskabelig og Mathematisk,
Afd. 10 Bd. IV, (1873), pp. 286-393. |
[Ze2] |
___________, Sur les différentes formes des
courbes planes du quartriéme order, Math. Ann., 7
(1874), pp. 410-432. |