up
Up: Table of Contents

Bibliography

[Be] D. N. BERNSTEIN, The number of roots of a system of equations, Funct. Anal. Appl., 9 (1975), pp. 183-185.
[BGG] I. N. BERNSTEIN, I. M. GELFAND, AND S. I. GELFAND, Schubert cells and cohomology of the spaces G/P, Russian Mathematical Surveys, 28 (1973), pp. 1-26.
[Ber] A. BERTRAM, Quantum Schubert calculus, Adv. Math., 128 (1997), pp. 289-305.
[Br] R. BRICARD, Mémoire sur la théorie de l'octaèdre articulé, J. Math. Pures et Appliquées, 3 (1897), pp. 113-150.
[BCS] P. BURGISSER, M. CLAUSEN, AND M. SHOKROLLAHI, Algebraic Complexity Theory, Springer-Verlag, 1997.
[COGP] P. CANDELAS, X. C. DE LA OSSA, P. S. GREEN, AND L. PARKES, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 359 (1991), pp. 21-74.
[Ca] G. CASTELNUOVO, Numero delle involuzioni razionali gaicenti sopra una curva di dato genere, Rendi. R. Accad. Lineci, 4 (1889), pp. 130-133.
[CE-C] R. CHIAVACCI AND J. ESCAMILLA-CASTILLO, Schubert calculus and enumerative problems, Bollettino Un. Math. Ital., 7 (1988), pp. 119-126.
[Cl] J. CLARK, The consistent selection of local coordinates in linear system identification, in Proc. Joint Automatic Control Conference, 1976, pp. 576-580.
[CK] D. A. COX AND S. KATZ, Mirror symmetry and algebraic geometry, American Mathematical Society, Providence, RI, 1999.
[Co] H. S. M. COXETER, The twenty-seven lines on the cubic surface, in Convexity and its applications, Birkhäuser, Basel, 1983, pp. 111-119.
[DK] A. I. DEGTYAREV AND V. M. KHARLAMOV, Topological properties of real algebraic varieties: Rokhlin's way, Uspekhi Mat. Nauk, 55 (2000), pp. 129-212.
[De] M. DEMAZURE, Désingularization des variétés de Schubert généralisées, Ann. Sc. E. N. S. (4), 7 (1974), pp. 53-88.
[Di] P. DIETMAIER, The Stewart-Gough platform of general geometry can have 40 real postures, in Advances in Robot Kinematics: Analysis and Control, Kluwer Academic Publishers, 1998, pp. 1-10.
[EH] D. EISENBUD AND J. HARRIS, Divisors on general curves and cuspidal rational curves, Invent. Math., 74 (1983), pp. 371-418.
[EG1] A. EREMENKO AND A. GABRIELOV, Rational functions with real critical points and B. and M. Shapiro conjecture in real enumerative geometry. Annals of Mathe., 155 (2002), pp. 105-129.
[EG2] _____________, Degrees of real Wronski Mape. Discrete and Computational Geometry, to appear.
[Fu1] W. FULTON, Intersection Theory, no. 2 in Ergebnisse der Math., Springer-Verlag, 1984.
[Fu2] _________, Introduction to Intersection Theory in Algebraic Geometry, CBMS 54, AMS, 1996. second edition.
[FP] W. FULTON AND R. PANDHARIPANDE, Notes on stable maps and quantum cohomology. in Algebraic Geometry, Santa Cruz, 1995, J. Kollár, ed., vol. 62, Part 2 of Proc. Sympos. Pure Math., Amer. Math. Soc., 1997, pp. 45-96.
[Gi] G. GIAMBELLI, Rizoluzione del problema degli spazi secanti, Memor. Real. Acc. di Torino, 52 (1902), pp. 171-193.
[Gol] L. GOLDBERG, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math., 85 (1991), pp. 129-144.
[Gou] V. GOUGH, Contribution to discussion papers on research in automobile stability and control in tyre performance, 1957.
[Haa] B. HAAS, A counterexample to Kouchnirenko's conjecture. Beitr. Alg. Geom., 43, (2002), pp. 1-8.
[Harn] A. HARNACK, Über die Vieltheiligkeit der eben algebraischen Kurven, Math. Ann., 10 (1876), pp. 189-198.
[Harr] J. HARRIS, Galois groups of enumerative problems, Duke Math. J., 46 (1979), pp. 685-724.
[Hi1] D. HILBERT, Über die Darstellung definiter Formen als Summe von Formen-quadraten, Math. Ann., 32 (1888), pp. 342-350.
[Hi2] _________, Über die reellen Züge algebraischen Curven, Math. Ann., 38 (1891), pp. 115-138.
[Hi3] _________, Sur les problèmes futurs des mathématiques, in Proceedings of the Second International Congress of Mathematicians, Paris 1900, Gauthier-Villars, 1902, pp. 58-114.
[HSS] B. HUBER, F. SOTTILE, AND B. STURMFELS, Numerical Schubert calculus, J. Symb. Comp., 26 (1998), pp. 767-788.
[HS] B. HUBER AND B. STURMFELS, A polyhedral method for solving sparse polynomial systems, Math. Comp., 64 (1995), pp. 1541-1555.
[HV] B. HUBER AND J. VERSCHELDE, Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control, SIAM J. Control and Optim., 38 (2000), pp. 1265-1287.
[Hu] J. HUISMAN, On the number of real hypersurfaces hypertangent to a given real space curve. Illinois Journal of Math., to appear.
[In] K. INTRILIGATOR, Fusion residues, Mod. Phys. Lett. A, 6 (1991), pp. 3543-3556.
[IR] I. ITENBERG AND M.-F. ROY, Multivariate Descartes' rule, Beiträge zur Algebra und Geometrie, 37 (1996), pp. 337-346.
[Ka] S. KATZ, On the finiteness of rational curves on quintic threefolds, Compositio Math., 60 (1986), pp. 151-162.
[KS] V. KHARLAMOV AND F. SOTTILE, Maximally inflected real rational curves. math.AG/0206268, 2002.
[Kh1] A. KHOVANSKII, Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl., 12 (1978), pp. 38-46.
[Kh2] __________, Fewnomials, Trans. of Math. Monographs, 88, AMS, 1991.
[Kl1] S. L. KLEIMAN, The transversality of a general translate, Compositio Math., 28 (1974), pp. 287-297.
[Kl2] __________, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in Mathematical Developments arising from Hilbert Problems, vol. 28 of Proc. Sympos. Pure Math., Amer. Math. Soc., 1976, pp. 445-482.
[Klein] F. KLEIN, Eine neue Relation zwischen den Singularitäten einer algebraischen Kurve, Math. Ann., 10 (1876), pp. 199-209.
[Ko] A. KUSHNIRENKO, A Newton polyhedron and the number of solutions of a system of k equations in k unknowns, Usp. Math. Nauk., 30 (1975), pp. 266-267.
[Kr] L. KRONECKER, Leopold Kronecker's Werke, Chelsea, NY, 1968.
[Lar] D. LARMAN. Problem posed in the Problem Session of the DIMACS Workshop on Arrangements, Rutgers University, New Brunswick, NJ, USA, 1990.
[Laz] D. LAZARD, Generalized Stewart platform: how to compute with rigid motions?, in IMACS-SC'93, 1993.
[LRW] T. Y. LI, J. M. ROJAS, AND X. WANG, Trinomials in the plane. 2001.
[LW] T. Y. LI AND X. WANG, On multivariate Descartes' rule--a counterexample, Beiträge Algebra Geom., 39 (1998), pp. 1-5.
[MPT] I. MACDONALD, J. PACH, AND T. THEOBALD, Common tangents to four unit balls in R3. Discrete and Computational Geometry 26 (2001), pp. 1-17.
[Me] G. MEGYESI, Lines tangent to 4 spheres with affinely dependent centres. Discrete and Computational Geometry 26 (2001), pp. 493-497.
[Mo1] B. MOURRAIN, The 40 generic positions of a parallel robot, in ISSAC'93, Kiev, ACM Press, 1993, pp. 173-182.
[Mo2] ___________, Enumeration problems in geometry, robotics, and vision, in Algorithms in Algebraic Geometry and Applications (MEGA-94, Santander), L. González-Vega and T. Recio, eds., vol. 143 of Progress in Math., Birkhäuser, 1996, pp. 285-306.
[Na] D. NAPOLETANI, A power function approach to Kouchnirenko's conjceture. in Symbolic Computation: solving equations in algebra, geometry, and engineering (South Hadley, MA 2000), pp. 99-106, Contemporary Math. 286, AMS, 2001.
[PS] P. PEDERSEN AND B. STURMFELS, Mixed monomial bases, in Algorithms in Algebraic Geometry and Applications, L. González-Vega and T. Recio, eds., vol. 143 of Progress in Mathematics, Proceedings, MEGA-94, Birkhäuser, 1996, pp. 307-316.
[Pi] M. PIERI, Sul problema degli spazi secanti, Rend. Reale Ist. lombardo, 26 (1893), pp. 534-546.
[PR] V. POWERS AND B. REZNICK, Notes towards a constructive proof of Hilbert's theorem on ternary quartics, in Quadratic forms and their applications (Dublin, 1999), Amer. Math. Soc., Providence, RI, 2000, pp. 209-227.
[Ra] M. RAGHAVAN, The Stewart platform of general geometry has 40 configurations, in ASME Design and Automation Conf., vol. 32-2, 1991, pp. 397-402.
[RRW] M. RAVI, J. ROSENTHAL, AND X. WANG, Degree of the generalized Plücker embedding of a quot scheme and quantum cohomology, Math. Ann., 311 (1998), pp. 11-26.
[RTV] F. RONGA, A. TOGNOLI, AND T. VUST, The number of conics tangent to 5 given conics: the real case, Rev. Mat. Univ. Complut. Madrid, 10 (1997), pp. 391-421.
[RV] F. RONGA AND T. VUST, Stewart platforms without computer?, in Real Analytic and Algebraic Geometry, Proceedings of the International Conference, (Trento, 1992), Walter de Gruyter, 1995, pp. 196-212.
[Sch1] H. SCHUBERT, Kalkul der abzählenden Geometrie, Springer-Verlag, 1879. reprinted with an introduction by S. Kleiman, 1979.
[Sch2] __________, Anzahl-Bestimmungen für lineare Räume beliebiger Dimension, Acta. Math., 8 (1886), pp. 97-118.
[Sch3] __________, Die n-dimensionalen Verallgemeinerungen der fundamentalen Anzahlen unseres Raume, Math. Ann., 26 (1886), pp. 26-51. (dated 1884).
[Sch4] __________, Losüng des Charakteritiken-Problems für lineare Räume beliebiger Dimension, Mittheil. Math. Ges. Hamburg, (1886), pp. 135-155. (dated 1885).
[ST] B. SIEBERT AND G. TIAN, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intrilligator, Asian J. Math., 1 (1997), pp. 679-695.
[So1] F. SOTTILE, Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math. J., 87 (1997), pp. 59-85.
[So2] _________, Real enumerative geometry and effective algebraic equivalence, J. Pure Appl. Alg., 117 & 118 (1997), pp. 601-615. Proc., MEGA'96.
[So3] _________, Enumerative geometry for real varieties, in Algebraic Geometry, Santa Cruz 1995, J. Kollár, R. Lazarsfeld, and D. Morrison, eds., vol. 62, Part 1 of Proc. Sympos. Pure Math., Amer. Math. Soc., 1997, pp. 435-447.
[So4] _________, The conjecture of Shapiro and Shapiro. An archive of computations and computer algebra scripts, http://www.expmath.org/extra/9.2/sottile, 1999.
[So5] _________, The special Schubert calculus is real, ERA of the AMS, 5 (1999), pp. 35-39.
[So6] _________, Real rational curves in Grassmannians, J. Amer. Math. Soc., 13 (2000), pp. 333-341.
[So7] _________, Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro, Exper. Math., 9 (2000), pp. 161-182.
[So8] _________, Some real and unreal enumerative geometry for flag manifolds, Mich. Math. J., 48 (2000), pp. 573-592. Special Issue in Honor of Wm. Fulton.
[So9] _________, Elementary transversality in the Schubert calculus for arbitrary characteristic. www.arXiv.org/math.AG/0010319, 2001.
[So10] _________, Rational curves in Grassmannians: systems theory, reality, and transversality. to appear in Advances in Algebraic Geometry Motivated by Physics, ed. by E. Previato, Contemporary Math. 276, 2001, pp. 9-42.
[So11] _________, Some real and unreal conjectures on enumerative geometry for flag manifolds. In preperation, 2001.
[STh] F. SOTTILE AND T. THEOBALD, Common tangent lines to 2n-2 spheres in Rn. Trans. Amer. Math. Soc., to appear. www.arXiv.org/math.AG/0105180, 2001.
[Ste] D. STEWART, A platform with 6 degree of freedom, Proc. of the Institution of Mechanical Engineers, 180 (1965-66), pp. 371-386.
[Stu1] B. STURMFELS, On the number of real roots of a sparse polynomial system, in Hamiltonian and gradient flows, algorithms and control, vol. 3 of Fields Inst. Commun., American Mathematical Society, Providence, 1994, pp. 137-143.
[Stu2] __________, Viro's theorem for complete intersections, Ann. della Scuola Nor. Sup. Pisa, Sc. Fis. Mat., Ser. IV, XXI (1994), pp. 377-386.
[Va] C. VAFA, Topological mirrors and quantum rings, in Essays on Mirror Manifolds, S.-T. Yau, ed., International Press, Hong Kong, 1992, pp. 96-119.
[Ve] J. VERSCHELDE, Polyhedral homotopies for dense, sparse, and determinantal systems. MSRI preprint 1999-041, 1999.
[Vi] O. VIRO, Real algebraic plane curves: Constructions with controlled topology, Algebra i Analiz, 1 (1989), pp. 1-73. Translation in Leningrad Math. J., 1 (1990), pp. 1059-1134.
[Wa] C. WALL, Is every quartic a conic of conics?, Math. Proc. Cambridge Philos. Soc., 109 (1991), pp. 419-424.
[Wh] D. WHITE, Sign-balanced posets. Preprint, Feb. 11, 2000 at white@math.umn.edu.
[Ze1] H. G. ZEUTHEN, Almindelige Egenskaber ved Systemer af plane Kurver, Danske Videnskabernes Selskabs Skrifter, Naturvidenskabelig og Mathematisk, Afd. 10 Bd. IV, (1873), pp. 286-393.
[Ze2] ___________, Sur les différentes formes des courbes planes du quartriéme order, Math. Ann., 7 (1874), pp. 410-432.

up
Up: Table of Contents