A congruence modulo four in real Schubert calculusBy Nickolas Hein, Frank Sottile, and Igor Zelenko, |
||
We establish a congruence modulo four in the real Schubert calculus on the
Grassmannian of m-planes in 2m-space.
This congruence holds for fibers of the Wronski map and a generalization to what we call
symmetric Schubert problems.
This strengthens the usual congruence modulo two for numbers of real solutions to
geometric problems.
It also gives examples of geometric problems given by fibers of a map whose degree is
zero but where each fiber contains real points. We present the resuts of some computational experiments which led us to seek these results. |
X (X)6 = 16 on Gr(3;6) | ||||||||||
type | # real solutions | |||||||||
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | ||
1r | 4r1c | 21255 | 35482 | 17176 | 7228 | 18859 | ||||
1r | 2r2c | 46357 | 32374 | 12268 | 3654 | 5347 | ||||
1r | 0r3c | 60437 | 15351 | 18321 | 2116 | 3775 |
(X)9 = 42 on Gr(3;6) | ||||||||||||||||||||||
# real solutions | ||||||||||||||||||||||
type | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 |
7r1c | 1099 | 7975 | 42235 | 9081 | 6102 | 8827 | 1597 | 4207 | 1343 | 172 | 17362 | |||||||||||
5r2c | 24495 | 30089 | 25992 | 5054 | 3632 | 4114 | 955 | 1586 | 832 | 63 | 3188 | |||||||||||
3r3c | 39371 | 35022 | 15924 | 3150 | 1990 | 2183 | 494 | 622 | 367 | 35 | 842 | |||||||||||
1r4c | 76117 | 14481 | 3574 | 1375 | 2925 | 271 | 364 | 204 | 32 | 477 |
W W (W)5 = 30 on Gr(4;8) | ||||||||||||||||||
type | # real solutions | |||||||||||||||||
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | |||
1r0c | 1r0c | 3r1c | 49016 | 17671 | 8986 | 5890 | 1052 | 2304 | 15081 | |||||||||
1r0c | 1r0c | 1r2c | 42741 | 35629 | 9520 | 4283 | 3028 | 744 | 828 | 3227 |
W (W)8 = 90 on Gr(4;8) | |||||||||||||||||||||||||||||||||||||||||||||||
type | # real solutions | ||||||||||||||||||||||||||||||||||||||||||||||
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | ||
1r0c | 6r1c | 1586 | 510 | 270 | 924 | 118 | 86 | 348 | 44 | 39 | 70 | 123 | 15 | 36 | 16 | 8 | 100 | 1 | 1 | 705 | |||||||||||||||||||||||||||
1r0c | 4r2c | 1611 | 850 | 423 | 557 | 373 | 195 | 432 | 42 | 61 | 179 | 21 | 23 | 31 | 26 | 5 | 19 | 3 | 1 | 46 | 102 | ||||||||||||||||||||||||||
1r0c | 2r3c | 1080 | 1708 | 773 | 394 | 319 | 210 | 85 | 198 | 25 | 23 | 84 | 11 | 9 | 14 | 10 | 2 | 14 | 1 | 15 | 25 | ||||||||||||||||||||||||||
1r0c | 0r4c | 2756 | 807 | 747 | 162 | 178 | 59 | 95 | 23 | 34 | 89 | 4 | 6 | 5 | 12 | 5 | 1 | 17 |