Grothendieck Polynomials via Permutation Patterns and chains in the Bruhat Order

Cristian Lenart, Shawn Robinson, and Frank Sottile

We give new formulas for Grothendieck polynomials of two types. One type expresses any specialization of a Grothendieck polynomial in at least two sets of variables as a linear combination of products Grothendieck polynomials in each set of variables, with coefficients Schubert structure constants for Grothendieck polynomials. The other type is in terms of chains in the Bruhat order. We compare this second type with other constructions of Grothendieck polynomials within the more general context of double Grothendieck polynomials and the closely related H-polynomials. Our methods are based upon the geometry of permutation patterns.



The manuscript in postscript, and in pdf.
Previous