Assignments and problems:

Introduction and real roots

- (1) Let $p, g \in \mathbb{R}[x]$ be univariate polynomials. Generalize Sturm's theorem in order to count the number of distinct real zeroes of p in [a, b] for which g is positive minus the number of distinct real zeroes of p in [a, b] for which g is negative. Consider the initial sequence $p_0 := p, p_1 := p'g$.
- (2) If two endormorphisms f and g on a finite-dimensional vector space V are diagonalizable and $f \circ g = g \circ f$, then there exists a joint diagonalization (i.e. a diagonalization with respect to a joint basis).
- (3) Let I be a zero-dimensional, radical ideal in $R = \mathbb{C}[x_1, \ldots, x_n]$, and let \mathcal{B} be a fixed monomial basis of R/I. Further let $f \in R$ such that the values f(p) are distinct for all zeroes p.
 - (a) For a given $p \in V(I)$, show that there exists $g \in R$ with g(p) = 1 and g(p') = 0 for all zeroes $p' \neq p$.
 - (b) Show that the coset [g] from part (a) is an eigenvector of m_f , and that the geometric multiplicity of the corresponding eigenvalue is 1.
- (4) Use Hermite's method to determine the number of common real zeros to

$$x^{2} + y^{2} = 1$$
, $\frac{1}{2}x^{2} + 2y^{2} = 1$.

Next, replace the factor 2 by a and investigate what happens for a = 1, a > 1.

- (5) Write a MAPLE (or SINGULAR) program to determine the trace form. Apply the program to the previous example.
- (6) Given a monic quartic polynomial $p = x^4 + \sum_{i=0}^3 a_i x^i$, deduce an exact characterization (in the coefficients a_i) for the property that p has exactly two roots.