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PREFACE 3

Preface

These lecture notes serve as material accompanying a series of lectures given within the

IMA summer school Applicable Algebraic Geometry at Texas A&M University, 2007 (or-

ganized by F. Sottile, L. Matusevich and myself).

The goal of the lectures is to provide an access to some important techniques as well as

to some current developments in applicable algebraic geometry, in particular from the

viewpoint of discrete and computational algebraic geometry. The topics of the 10 lectures

focus around three main areas:

• Real roots of polynomial systems

• Optimization and real algebraic geometry

• Tropical geometry

This selection of topics reflects both a personal choice as well as some central topics within

the IMA Thematic Year 2006/2007 on Applications of Algebraic Geometry.

Rather than intending to be comprehensive, the goal of the lecture notes is to provide

a roadmap through the material and a window into the original sources. Similarly, our

lists of references are not intended to be comprehensive, but to provide a few pointers to

suitable sources where many more references can be found.

Some of the material stems from earlier papers I have (co-)authored.

Enjoy!
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CHAPTER 1

Introduction and real algebraic geometry

Many applications of algebraic geometry deal – at least partially – with real solutions to

polynomial equations. Depending on the type of question we ask, the problems become

a quite different flavor. E.g., we might ask for (algorithmic) methods to analyze the real

roots for the case of a given polynomial system (e.g., count them). A different type of

question is to consider a whole class of problems with a finite number of complex solutions,

and to ask how many solutions can be real.

In this chapter, we deal with some foundational material of real algebraic geometry. Our

main focus is on the first of the two mentioned questions and on algorithmic aspects. At

the end of the chapter, we discuss some aspects of the second question.

1. Real roots of univariate polynomials

We start by considering some classical results for univariate situations.

Let p be a univariate polynomial with real coefficients, i.e., p ∈ R[x]. The Sturm sequence

of p is the following sequence of polynomials of decreasing degree:

p0(x) := p(x) , p1(x) := p′(x) , pi(x) := − rem(pi−2(x), pi−1(x)) for i ≥ 2 ,

where rem denotes the remainder of a division with remainder. Let pm be the last non-zero

polynomial in the sequence.

Theorem 1.1. (Sturm.) Let p ∈ R[x] and a < b with p(a), p(b) 6= 0. Then the number

of distinct real zeroes of p in the interval [a, b] is the number of sign changes in the

sequence p0(a), p1(a), p2(a), . . . , pm(a) minus the number of sign changes in the sequences

p0(b), p1(b), p2(b), . . . , pm(b).

Here, any zeroes are ignored when counting the number of sign changes in a sequence of

real numbers. E.g., the sequence +0+0−+0 has two sign changes. Further note that in

the special case m = 0 the polynomial p is constant and thus due to p(a), p(b) 6= 0 it has

no roots.

7



8 1. INTRODUCTION AND REAL ALGEBRAIC GEOMETRY

In order to prove Sturm’s Theorem, we concentrate on the case where all roots have

multiplicity one. Let N(x) be the number of sign changes at a point x ∈ R.

Lemma 1.2. For any x ∈ R, the Sturm sequence cannot have two consecutive zeroes.

Proof. By our assumption on the multiplicities, p0 and p1 cannot simultaneously vanish

at x. Moreoever, inductively, if pi and pi+1 both vanish at x then the division with

remainder

pi−1 = sipi − pi+1 with some polynomial si

implies pi−1(x) = 0 as well, contradicting the induction hypothesis. �

Proof of Sturm’s Theorem. We imagine a left to right sweep on the real number line. By

continuity of polynomial functions, it suffices to show that N(x) decreases by 1 for a root

of p and stays constant for a root of pi, i > 0.

If p(x) = 0: If p switches from positive to negative then it is locally decreasing, so that

the sequence of signs switches from +− . . . to −− . . .. If instead p switches from negative

to positive then it is locally increasing, so that the sequence of signs switches from −+ . . .

to ++ . . ..

If pi(x) = 0 for some i > 0 (for i ≥ 2 this might also happen at a zero of p): Assume that

pi switches from positive to negative (as before, the other case is analogous). Then by

definition of pi+1, the numbers pi−1(x) and pi+1(x) have opposite signs. So the sequence

of sign switches either from . . .++− . . . to . . .+−−. . . or from . . .−++ . . . to . . .−−+ . . ..

In both cases, the number of sign changes remains invariant. Even at x, the pattern of

signs is . . .+0− . . . or . . .−0+ . . ., so N(x) is constant in the neighborhood of x. �

In order to count all real roots of a polynomial p(x) we can apply Sturm’s Theorem to

a = −∞ and b = ∞, which corresponds to looking at the signs of the leading coefficients of

the polynomials pi in the Sturm sequences. Using bisection, one can develop a procedure

for isolating the real roots by rational intervals. This method is implemented, e.g., in

Maple.

A second classical result for counting the number of real roots of a univariate polynomial

is the Hermite form. Let p ∈ R[x] of degree n. Further, let q ∈ R[x] be a fixed polynomial,

and let Hq(p) be the symmetric n × n-Hankel matrix defined by

(Hq(p))ij =
n∑

k=1

q(xk)x
i+j+2
k ,
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where x1, . . . , xn are the roots of p (over C). Every symmetric matrix naturally defines a

quadratic form; here, we obtain

zT Hq(p)z

=








z0

z1
...

zn−1








T 






∑n
k=1 q(xk)

∑n
k=1 q(xk)xk · · · ∑n

k=1 q(xk)x
n−1
k∑n

k=1 q(xk)xk

∑n
k=1 q(xk)x

2
k · · · ∑n

k=1 q(xk)x
n
k

...
...

. . .
...

∑n
k=1 q(xk)x

n−1
k

∑n
k=1 q(xk)x

n
k · · · ∑n

k=1 q(xk)x
2n−2
k















z0

z1
...

zn−1








=

n∑

k=1

q(xk)(z0 + z1xk + · · ·+ zn−1x
n−1
k )2 .

Denoting by V the Vandermonde matrix

V =








1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n








,

we can write

Hq(p) = V T diag(q(x1), . . . , q(xn))V .

Theorem 1.3. The rank of Hq(p) is equal to the number of roots xj of p for which

q(xj) 6= 0. The signature of Hq(p) is equal to the number of real roots xj of p for which

q(xj) > 0 minus the number of real roots xj of p for which q(xj) < 0.

Proof. Again, we first consider the case that all roots are distinct. Setting z(xk) :=
∑n−1

i=0 zix
i
k we obtain

zT Hq(p)z =
n∑

k=1

q(xk)(z0 + z1xk + · · ·+ zn−1x
n−1
k )2

=
n∑

k=1

q(xk)(z(xk))
2 .

We write this quadratic form in x as

zT Hq(p)z

=
∑

xk∈R

q(xk)z(xk)
2 +

∑

xk,x∗
k
∈C\R

q(xk)z(xk)
2 + q(x∗

k)z(x∗
k)

2

=
∑

xk∈R

q(xk)z(xk)
2 + 2

∑

xk,x∗
k
∈C\R

(
ℜz(xk)

ℑz(xk)

)T ( ℜq(xk) −ℑq(xk)

−ℑq(xk) −ℜq(xk)

)(
ℜz(xk)

ℑz(xk)

)

.
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Since the zeroes xk are pairwise distinct, the polynomials z(xk) are linearly independent

(by Vandermonde), and therefore also

{z(xk)}xk∈R ∪ {ℜz(xk),ℑz(xk)}xk,x∗
k
∈C\R ,

which correspond to linear forms in z0, . . . , zk−1. Hence, we have represented the quadratic

form defined by Hq(p) in a different basis. Due to the invariance of the signature under

basis transformations we can compute the signature by adding the signatures of the scalar

elements q(xk) and of the 2 × 2-blocks. The latter signatures are zero (because the trace

is zero), which proves the claim.

For the general case, if x1, . . . , xs are the distinct roots with multiplicity µ(xi), we have

zT Hq(p)z =

s∑

k=1

µ(xk)q(xk)(z(xk))
2 ,

from which the statement follows analogously. �

In particular, for counting the number of roots choose q(x) = 1. The matrix corresponding

to this quadratic form is

(1.1) H1(p) =








n s1 · · · sn−1

s1 s2 · · · sn
...

...
. . .

...

sn−1 sn · · · s2n−2








,

where sk =
∑n

i=1 xk
i is the k-th Newton sum of p. The Newton sums can be expressed as

polynomials in the coefficients ai of p =
∑n

i=0 aix
i. Namely, the si and the aj are related

by Newton’s identities

sk + an−1sk−1 + · · ·+ a0sk−n = 0 (k ≥ n) ,

sk + an−1sk−1 + · · ·+ an−k+1s1 = −kan−k (1 ≤ k < n) .

In particular, we obtain:

Corollary 1.4. For a polynomial p ∈ R[x], all zeroes are real if and only if its associated

matrix H1(p) is positive semidefinite.

We consider another classical result:

Theorem 1.5. (Déscarte’s Rule of Signs.) The number of distinct positive real roots of

a polynomial is at most the number of sign changes in its coefficient sequence.
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Proof. By induction on n. For n = 1, the statement is clear. Now assume that is

already known for n − 1, with n > 1. Let p ∈ R[x] be of degree n. We may assume that

x does not divide p, so let p be of the form

p =

m∑

i=k

aixi + a0 with some k ∈ {1, . . . , m}

and am, ak, a0 6= 0. Then p′ =
∑m

i=k aiix
i−1. Since the signs of the coefficients of p′

coincide with the signs of the coefficients of p except a0, the induction hypothesis implies

that the number of sign changes in the coefficient sequence an, . . . , aq bounds the number

of positive roots of p′. Denote by x0 the smallest positive root of p (and set x0 = −∞ if

there is none). Then p′ has the same sign in (0, x0) as ak. Since p(0) = a0, the polynomial

p may have roots in (0, x0) only if aka0 < 0, which is the case if the number of sign changes

in an, . . . , a0 exceeds by 1 the number of sign changes in an, . . . , ak. Since between any

two zeroes of p there must be a zero of p′, this proves the statement. �

By replacing x by −x in Déscarte’s Rule, we obtain a bound on the number of negative

real roots. In fact, both bounds are tight when all roots of p are real (see Theorem 3.3).

In general, we have the following corollary to Déscarte’s Rule.

Corollary 1.6. A polynomial with m terms has at most 2m − 1 real zeroes.

This bound is optimal, as we see from the example

x ·
m−1∏

j=1

(x2 − j) .

All 2m − 1 zeroes of this polynomial are real, and its expansion has m terms.

Notes. The material in this chapter is classical.

Some standard references are:

• S. Basu, R. Pollack, M.-F. Roy. Algorithms in Real Algebraic Geometry, Springer,

2003.

• J. Bochnak, M. Coste, M.-F. Roy: Real Algebraic Geometry. Springer, 1998.

2. Eigenvalue techniques

In order to provide some methods for the roots of a (zero-dimensional) ideal, we first

discuss a central bridge from the solutions of polynomial systems to eigenvalue methods

of linear algebra and analytic geometry. These results are based on very classical results,
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but their computational aspects have only been developed systematically within the last

15 years. We consider a system

f1(x) = · · · = fr(x) = 0

in x = (x1, . . . , xn), which has finitely many solutions over C (!) and want to transfer these

solutions to an eigenvalue problem. For determining the eigenvalues of a complex matrix,

there are well-investigated numerical methods. In order to explain this connection, we

have another look at the univariate case.

2.1. The univariate case. Let K be a field and p ∈ K[x] be a univariate polynomial.

The eigenvalues of a matrix A ∈ Kn×n are the roots of the characteristic polynomial of

A, i.e., the roots of

χA(t) = det(A − tI) ,

where I ∈ Kn×n denotes the unit matrix. The characteristic polynomial p(t) is always

of degree n, and the leading coefficient is (−1)n. In order to reduce the determination of

the zeroes of p to an eigenvalue problem, it therefore suffices to state a matrix A with

characteristic polynomial p.

Definition 2.1. The companion matrix of the monic polynomial

p(t) = tn + an−1t
n−1 + · · ·+ a1t + a0 ∈ K[t]

with degree n is the matrix

Cp =










0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 . . . −an−1










∈ Kn×n .

Theorem 2.2. The characteristic polynomial of the companion matrix of the monique

polynomial

p(t) = tn + an−1t
n−1 + · · ·+ a1t + a0 ∈ K[t]

of degree n ≥ 1 is

det(Cp − tI) = (−1)np(t) .

Proof. The proof is by induction. For n = 1, the statement is clear, and for n > 1 an

expansion by the first row yields

det(Cp − tI) = (−t)(−1)n−1q(t) + (−1)n+1(−a0) ,

where q(t) = tn−1 + an−1t
n−2 + · · · + a2t + a1. We obtain

det(Cp − tI) = (−1)np(t) .
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�

2.2. The coordinate ring. Let K be a field and R := K[x1, . . . , xn] be the ring of

polynomials in x1, . . . , xn with coefficients in K. For an ideal I ⊂ R, the definition

a ≡ b : ⇐⇒ a − b ∈ I

defines an equivalence relation. We write

a ≡ b mod I

and call a and b congruent modulo I. The relation is compatible with addition and

multiplication, because the properties a1 − b1, a2 − b2 ∈ I imply (a1 + a2) − (b1 + b2) ∈ I

and a1a2 − b1b2 = a1(a2 − b2)+ (a1 − b1)b2 ∈ I. Hence, we can consider the residue classes

(cosets) [a] = a + I, a ∈ R, and the operations [a] + [b] := [a + b], [a] · [b] := [a · b]

are well-defined on the residue classes. This quotient ring of R modulo I is called the

coordinate ring of I and shortly written R/I.

Since in particular we can multiply elements in R/I with the residue classes [c] of the

scalar elements c ∈ K of the polynomial ring, we can consider the residue class ring R/I

as a vector space over the field K. Thus R/I constitutes an algebra.

In the following, let K be an algebraically closed field. We recall the following central

connection between finite (complex) varieties and the vector space R/I.

Theorem 2.3. Let K be algebraically closed, and let I be an ideal in R. Then the following

statements are equivalent:

(1) V(I) has finite cardinality.

(2) The K-vector space R/I is finite-dimensional.

Proof. If R/I is a vector space of the finite dimension N , then the elements [1], [x1], . . . ,

[xN
1 ] are linearly dependent. Hence, there exists a polynomial p1(x1) of degree at most N

in I. As a consequence, the first coordinate of each x ∈ V(I) is a zero of p1. By analogous

consideration of the variables x2, . . . , xn we obtain immediately that V (I) is finite.

If, conversely, V(I) is finite and without loss of generality nonempty, then there exists

a polynomial p1(x1), whose zero set coincides with the projection of V(I) onto the first

coordinate. By Hilbert’s Nullstellensatz a power of p1 is contained in the ideal I. By

analogous considerations of the projections of the variables x2, . . . , xn we obtain that for

each i ∈ {1, . . . , n} a univariate polynomial of degree di in xi is contained in the ideal I,

where d1, . . . , dn ∈ N. Hence, R/I has a basis of monomials whose degree in xi is at most

di. In particular, R/I has finite dimension. �
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We note that the proof direction “⇐” remains valid over R.

An important aspect is how to compute effectively in the vector space that was introduced

in Theorem 2.3. Using Gröbner bases, this can be done as follows. Let I be an ideal in R,

and let G be a Gröbner basis of I with respect to a fixed monomial ordering. Then each

polynomial of an equivalence class [f ] of R has the same remainder r when dividing by G

with remainder. Since r is a finite K-linear combination of monomials {xα : xα 6∈ LT(I)}
and each finite K-linear combination of these monomials can occur naturally as remainder,

the mapping

ϕ : R/I → span{xα : xα 6∈ LT(I)}(2.1)

[f ] 7→ f
G

(2.2)

is bijective. Obviously, the set V = span{xα : xα 6∈ LT(I)} defines a subspace of R.

The monomials {xα : xα 6∈ LT(I)}, which form a basis of V are called the standard

monomials. The next statement makes this connection more precise, by showing that the

mapping ϕ is even linear, i.e., it defines a vector space isomorphism.

Theorem 2.4. Let I be an ideal in R, and fix a monomial ordering. Then the K-vector

space R/I is isomorphic to the K-vector space V = span {xα : xα 6∈ LT(I)}.

An ideal is called zero-dimensional if V(I) is finite, i.e., by Theorem 2.3, if the K vector

space R/I is finite-dimensional. The next theorem allows to charaterize the cardinality of

the variety V(I) of a zero-dimensional ideal I by the dimension of the vector space R/I.

Theorem 2.5. Let K be a field and I be a zero-dimensional ideal in R. Then the cardi-

nality of the variety V(I) is bounded from above by the dimension of the K-vector space

R/I.

2.3. Companion matrices. So far, we have considered the algebra R/I from the

viewpoint of a vector space. We now consider also multiplication in R/I. In the following,

let I be a zero-dimensional ideal.

Let i ∈ {1, . . . , n}. Multiplication of an element in R/I with the residue class [xi] of a

variable xi defines an endomorphism mi (i ∈ {1, . . . , n}),
R/I → R/I ,

mi([f ]) := [xi] · [f ] = [xif ] .

Since R/I is a finite-dimensional vector space, for a given basis of R/I there exists a

representation matrix of the linear mapping mi, 1 ≤ i ≤ n. For algorithmic purposes the

basis of the standard monomials is particularly suited. Let B denote the set of standard



2. EIGENVALUE TECHNIQUES 15

monomials of an ideal I, and let M1, . . . , Mn ∈ R|B|×|B| be the representation matrices

of the endomorphisms m1, . . . , mn with respect to the basis B. Mi is called the i-th

companion matrix of the ideal I. The rows and the columns of the representation matrix

Mi are indexed with the monomials in B. For xα, xβ ∈ B, the entry of Mi in row xα and

column xβ is the coefficient of xα in the normal form of the polynomial xi · xβ.

Lemma 2.6. The companion matrices commute pairwise, i.e.,

Mi · Mj = Mj · Mi for 1 ≤ i < j ≤ n .

Proof. The matrices MiMj and MjMi are the representation matrices of the composi-

tions mi ◦ mj and mj ◦ mi, respectively. Since multiplication in R/I is commutative, the

claim follows. �

2.4. Eigenvalue-based algorithms. We begin with recalling some facts from linear

algebra known in connection with the Theorem of Cayley-Hamilton. Let V be a vector

space over a field K (below we will consider always V = R/I), and let f be an endo-

morphism on V . For a polynomial p =
∑n

i=0 cit
i ∈ K[t], the polynomial p(f) is defined

by

p(f) =

n∑

i=0

cif
i ,

where f i denotes the i-times application of the endomorphism f .

Definition 2.7. Let V be a vector space of a field K and f be an endomorphism on V .

(1) The ideal

If = {p ∈ K[t] : p(f) = 0}
is called the ideal of f .

(2) The uniquely determined monique polynomial h with 〈h〉 = If is called the

minimal polynomial of f and is denoted by hf .

Our main goal is to investigate the subsequent characterization for the components of the

zeroes of an ideal I.

Theorem 2.8. Let K be algebraically closed. Further Let I ⊂ R be a zero-dimensional

ideal, i ∈ {1, . . . , n}. Then for each λ ∈ C the following statements are equivalent:

(1) λ is an eigenvalue of the endomorphism mi.

(2) There exists an x ∈ V(I) with xi = λ.
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Before we prove this statement, we state the following connections between the eigenvalues

and the minimal polynomial of an endomorphism.

Lemma 2.9. Let V be an n-dimensional vector space over K and f be an endomorphism

on V . Then for each λ ∈ K the following statements are equivalent:

(1) λ is an eigenvalue of f .

(2) λ is a zero of the minimal polynomial hf .

Proof. We show the following two statements from which the theorem follows.

(1) The minimal polynomial hf divides the characteristic polynomial χf ;

(2) χf divides hn
f .

The first statement follows from the theorem of Cayley-Hamilton which says that each

endomorphism is a zero of its characteristic polynomial.

For the second statement we first note that χf and hf decompose over K in linear factors.

Let Af be a representation matrix of the endomorphism f , and

χf = det(Af − tIn) = ±(t − λ1)
d1 · · · (t − λk)

dk

with λ1, . . . , λk ∈ K and d1, . . . , dk ∈ N. From the statement already shown we can deduce

that the minimal polynomial then has the form

hf = (t − λ1)
e1 · · · (t − λk)

ek

with 0 ≤ ei ≤ di. Now it suffices to show that ei ≥ 1 for all i ∈ {1, . . . , k}. Assume that

ei = 0 for some i. Further let v be an eigenvector to λi. Then for each eigenvalue λj 6= λi

we have

(Af − λjIn)v = (λi − λj)v 6= 0

and hence for the application of the matrix hf(Af ) on the vector v

hf (Af)v =
∏

j 6=i

((Af − λjIn)ejv) 6= 0 .

This contradicts the property that hf is a minimal polynomial of f . �

With these tools we can prove the eigenvalue characterization in Theorem 2.8.

Proof of Theorem 2.8. Let λ be an eigenvalue of the endomorphism mi on R/I

and [v] be an eigenvector to the eigenvalue λ. I.e., we have [xi · v] = [λ · v] and hence

[(xi − λ) · v] = 0 in the vector space R/I. We now assume that the second property of

the theorem does not hold, i.e., for all p ∈ V(I) the property pi 6= λ holds.
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In order to lead this statement to a contradiction, it suffices to show that the element

[xi−λ] has a multiplicative inverse in the ring R/I; namely, then from eigenvalue equation

[(xi − λ) · v] = 0 by multiplying with this inverse we obtain [v] = 0, a contradiction.

Since V(I) is finite, we can use the notation V(I) = {p(1), . . . , p(m)}. For k ∈ {1, . . . , m}
let gk ∈ R be a polynomial with the property

gk(p
(j)) =

{

1 if k = j ,

0 otherwise .

If the first coordinates p
(1)
1 , . . . , p

(m)
1 are distinct then we can — like in the well-known

Lagrange interpolation formulas — specifically set

gk = gk(x1) =

∏

j 6=k(x1 − p
(j)
1 )

∏

j 6=k(p
(k)
1 − p

(j)
1 )

.

(Otherwise, using a linear transformation, we can reduce our situation to that one.)

Let g =
∑k

j=1
1

p
(j)
i −λ

gj. Then (p
(j)
i −λ)g(p(k)) = 1 for all k ∈ {1, . . . , m}, in other words, the

polynomial 1− (xi −λ)g vanishes on all zeroes of the ideal I. By Hilbert’s Nullstellensatz

there exists an l ≥ 1 such that (1−(xi−λ)g)l is contained in I. Expanding this polynomial

and extracting the factors (xi − λ) we see that there exists a polynomial f ∈ R such that

1− (xi−λ)f is contained in I. In R/I this means [xi −λ][f ] = [1], so that f is the inverse

element of [xi − λ] in R/I. This yields the contradiction mentioned above.

Conversely, let p ∈ V(I) with pi = λ. Let hi =
∑m

i=0 aix
i be the minimal polynomial of

mi. By Lemma 2.9 it suffices to show that hi(λ) = 0. Since by definition of the minimal

polynomial the function hi(mi) is the zero endomorphism on R/I, this means for the

application of hi(mi) on the element [1] the property hi([xi]) = hi(mi)([1]) = 0 in R/I.

For the polynomial hi(xi) considered as polynomial in R this means that hi(xi) ∈ I, so

that the polynomial hi(xi) vanishes on each element of V(I). Hence, concerning the zero

p we have the property hi(λ) = hi(pi) = 0. �

Example 2.10. Let I = 〈xy2 + 1, x2 − 1〉. A Gröbner basis of I with respect to the

graded reverse lexicographical ordering is given by {y4−1, y2 +x}; hence a basis of R/I is

{y3, y2, y, 1}. With respect to this basis, the representing matrices of the endomorphisms

mx and my are

Mx =







0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0







and My =







0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0







.
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In Maple, they can be computed using the commmand MulMatrix. The eigenvalues of

Mx are −1 (twice) and 1 (twice), and the eigenvalues of My are −1, 1,−i, i. Indeed, we

have V(I) = {(1, i), (1,−i), (−1, 1), (−1,−1)}.

Notes. The technique requires to have a monomial bases of the coordinate ring R/I,

and then the resulting computational efforts depend on the dimension of R/I.

References:

• D. Cox, J. Little, D. O’Shea: Using Algebraic Geometry. Springer, 1998.

• B. Sturmfels: Solving Systems of Polynomial Equations, CBMS Regional Con-

ference Series in Math., vol. 97, AMS, Providence, RI, 2002.

3. Real roots in the multivariate case

In the following let I be a zero-dimensional ideal in C[x1, . . . , xn] generated by polyno-

mials in R[x1, . . . , xn]. Further R = C[x1, . . . , xn], and let B be a monomial basis of the

coordinate ring R/I.

In generalization to the the previous section, for any polynomial g ∈ R, we can define the

multiplication operation mg by

R/I → R/I ,

mg([f ]) := [g] · [f ] = [gf ] .

We fix a polynomial q ∈ R[x1, . . . , xn] and construct the bilinear form Tq by

Tq : R/I × R/I → R/I ,

(g, h) 7→ Tr(mqgh) .

Tq is called the trace form of q. Since I is generated by real polynomials, the representation

matrix of the bilinear form is a symmetric real matrix, and hence its eigenvalues are real.

Recall that for a real quadratic form S, the signature σ(S) is the number of positive

eigenvalues minus the number of negative eigenvalues of its representing matrix. The

rank ρ(S) of S is the rank of the representing matrix.

Theorem 3.1. For q ∈ R[x1, . . . , xn], the signature and rank of the bilinear form Tq

satisfy

σ(Tq) = #{a ∈ V (I) ∩ Rn : q(a) > 0} − #{a ∈ V (I) : q(a) < 0} ,

ρ(Tq) = #{a ∈ V (I) : q(a) 6= 0} .
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Proof. Once more, for simplicity, we assume that all multiplicities are 1.

The entry (i, j) of the representing matrix Mq of Tq with respect to the monomial basis

B = {xα(1), . . . , xα(d)} is

(3.1) Tr(mq·xα(i)·xα(j)) .

We will express (3.1) by the sum of the eigenvalues of Tq (or, equivalently, of Mq).

Let f ∈ R. By a slight generalization of Theorem 2.8, the set of eigenvalues of mf coincides

with the set of values of f at the points in V(I). Let p1, . . . , pd be the points in I (which

are distinct by our assumption). Hence, the sum of the eigenvalues of mq·xα(i)·xα(j) is

(3.2)
∑

p∈V (I)

q(p)pα(i)p(α(j)) ,

where in particular pα(i) denotes the value of the monomial xα(i) at the point p.

Similar to Theorem 1.3 we compute the signature in a different basis. Denoting by C the

d×d-matrix whose j-th column consists of the values pα(i)

j , 1 ≤ i ≤ d, the expression (3.2)

implies the decomposition

Mq = CDCT ,

where D is the diagonal matrix with entries q(p1), . . . , q(pd). In general C and D are

complex matrices. However, the nonreal points occur in conjugate pairs, so the same

arguments as in Theorem 1.3 can be applied to neglect these conjugate pairs. For the real

points, the corresponding eigenvalues of Tq are

q(p) for p ∈ V (I) ∩ Rn ,

which shows the claim. �

For the special case q = 1 we obtain:

Corollary 3.2. The signature of T1 yields the number of distinct real roots of I.

For the special case q = 1 and n = 1, we can think of a principal ideal I = 〈p〉 with

a univariate polynomial p ∈ R[x] of degree d. We set B = {1, x, . . . , xd−1}. Then (3.2)

implies that

(M1)ij =
∑

p∈V (I)

pi−1pj−1

(in our univariate case this remains true for multiple roots). Thus we have recovered the

Hankel matrix H1(p) from (1.1) containing the Newton sums of p.

In fact, the signature can be compute without actually determining the positive and

negative eigenvalues.
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Theorem 3.3. Let A be a symmetric real matrix. Then the number of positive eigenvalues

equals the number of sign changes in its characteristic polynomial χA(t).

Proof. Let p(t) be a real polynomial whose roots are all real. By Déscarte’s rule,

the number σ of positive eigenvalues is bounded by the number of sign changes in p(t).

Similarly, the number σ′ of negative eigenvalues is bounded by the number of sign changes

in p(−t). Hence the total number of positive and negative eigenvalues is bounded by σ+σ′.

Now σ+σ′ ≤ n and the fact that all eigenvalues of a symmetric real matrix are real imply

that the bound of Décarte’s rule of signs holds with equality. �

We close our discussion on methods for treating real roots by pointing out that this

covered only a short glimpse of relevant aspects. In particular, throughout our discussion

we always started from the situation of a given system and analyed the real roots of the

system (in particular, counted them). A different viewpoint is to consider problem classes

with a finite number of complex solutions (enumerative problems), and to ask how many

solutions can be real.

An interesting class considered by Sottile is the special Schubert calculus. This special

Schubert calculus asks for linear subspaces of a fixed dimension meeting some given (gen-

eral) linear subspaces (whose dimensions and number ensure a finite number of solutions)

in n-dimensional complex projective space Pn. For any given dimensions of the subspaces,

this problem is fully real, i.e., there exist real linear subspaces for which each of the a priori

complex solutions is real. In particular, for 1 ≤ k ≤ n− 2 there are dk,n := (k + 1)(n− k)

real (n−k−1)-planes U1, . . . , Udk,n
in Pn with

#k,n :=
1!2! · · ·k!((k + 1)(n − k))!

(n − k)!(n − k + 1)! · · ·n!

real k-planes meeting U1, . . . , Udk,n
. Here, dk,n and #k,n are the dimension and the degree

of the Grassmannian Gk,n, respectively.

The simplest case of this type is the classical problem of common transversals to four lines

in space. Let ℓ1, ℓ2, ℓ3, and ℓ4 be lines in general position in real 3-space. Then there

are two (in general complex) lines passing through ℓ1, . . . , ℓ4, and there are configurations

where both solution lines are real.

This can be seen as follows. The three mutually skew lines ℓ1, ℓ2, and ℓ3 lie in one ruling of

a doubly-ruled hyperboloid (see Figure 1). This is either (i) a hyperboloid of one sheet, or

(ii) a hyperbolic paraboloid. The line transversals to ℓ1, ℓ2, and ℓ3 constitute the second

ruling. Through every point p of the hyperboloid there is a unique line mp in the second

ruling which meets the lines ℓ1, ℓ2, and ℓ3.
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ℓ1

ℓ2

ℓ3

p
�

�
���

mp

(i)

ℓ1

ℓ2

ℓ3p
HHHj

mp

(ii)

Figure 1. Hyperboloids through 3 lines.

The hyperboloid is defined by a quadratic polynomial and so the fourth line ℓ4 will either

meet the hyperboloid in two points or it will miss the hyperboloid. In the first case there

will be two real transversals to ℓ1, ℓ2, ℓ3, and ℓ4, and in the second case there will be no

real transversal.

A related, recently well studied class of this type comes from nonlinear computational

geometry. Sottile and Theobald showed that 2n−2 general spheres in affine real space Rn

have at most 3 · 2n−1 common tangent lines in Cn, and that there exist spheres for which

all the a priori complex tangent lines are real.

The following construction (by Macdonald, Pach, and Theobald) illustrates this situation

in dimension 3: Suppose that the spheres have equal radii, r, and have centers at the

vertices of a regular tetrahedron with side length 2
√

2,

(2, 2, 0)T , (2, 0, 2)T , (0, 2, 2)T , and (0, 0, 0)T .

There are real common tangents only if
√

2 ≤ r ≤ 3/2, and exactly 12 when the inequality

is strict. Note that in this case the spheres are non-disjoint. It is an open question whether

it is possible for four disjoint unit spheres in R3 to have 12 common tangents.

If the spheres are unit spheres and the centers are coplanar, then Megyesi showed that

the maximal number of solutions goes down to 8.

Macdonald, Pach, and Theobald also addressed the question of degenerate configurations

of spheres.

Theorem 3.4. Four degenerate spheres in R3 of equal radii have colinear centers.

This result was recently extended by by Borcea, Goaoc, Lazard, and Petitjean.

Theorem 3.5. Four degenerate spheres in R3 have colinear centers.



22 1. INTRODUCTION AND REAL ALGEBRAIC GEOMETRY

Figure 2. Four spheres with equal radii and 12 common tangents.
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Birkhäuser, Boston, 203–224, 1993.

• F. Sottile. Enumerative real algebraic geometry, Algorithmic and quantitative

real algebraic geometry (Piscataway, NJ, 2001), DIMACS Ser. Discrete Math.

Theoret. Comput. Sci., vol. 60, Amer. Math. Soc., Providence, RI, 2003, 139–

179.

• F. Sottile, T. Theobald. Line problems in nonlinear computational geometry.

Preprint. math/0610407 .



CHAPTER 2

Optimization and real algebraic geometry

1. Global optimization of polynomials and sums of squares

In this part, our goal is to study polynomial optimization problems of the form

pmin := inf p(x)

s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0

with polynomials p, g1, . . . , gm ∈ R[x1, . . . , xn].

This class is a well-known “difficult” class of optimization problems. In general, these

problems are non-convex optimization problems, and from the viewpoint of computational

complexity these problems are in general NP-hard. Namely, e.g., the partition problem

belongs to this class: Given a1, . . . , am ∈ N, does there exist an x ∈ {−1, 1}n with
∑

xiai = 0 ?

In the last years, an exciting development has taken place, showing how to approximate

these problems in a hierarchical way using semidefinite programming and real algebraic

geometry. The roots of this development go back to N.Z. Shor (1987), and the main

developments of the SDP hierarchies have been initiated by A. Nemirovski, J. Lasserre

and P. Parrilo. As we will see, these developments have been taken place in dual settings.

1.1. Nonnegative polynomials versus sums of squares. Deciding the nonneg-

ativity of a given polynomial p ∈ R[x1, . . . , xn] is a difficult problem. The fundamental

idea of the approach is to replace such a problem by the decision problem “Is p a sum of

squares of polynomials?” This problem turns out to be much easier.

Example 1.1. Let p be homogeneous of degree 2d; then it suffices to investigate homoge-

neous polynomials of degree d for the decomposition.

Let

p(x, y) = 2x4 + 2x3y − x2y2 + 5y4

= (x2, y2, xy) Q





x2

y2

xy





23
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with a symmetric matrix Q ∈ R3×3. Since Q must be positive semidefinite, there exists a

decomposition Q = LLT . One specific solution is

L =
1√
2





2 0

−3 1

1 3



 , hence Q =





2 −3 1

−3 5 0

1 0 5



 .

This implies the sum of squares (SOS) decomposition

p(x, y) =
1

2
(2x2 − 3y2 + xy)2 +

1

2
(y2 + 3xy)2 .

This problem connects to a major theory of real algebraic geometry.

Let

Pn,d = {p ∈ R[x1, . . . , xn] : p of total degree ≤ d and p ≥ 0}
and

Σn,d = {p ∈ R[x1, . . . , xn] : p is a sum of squares} .

The following classical theorem is due to Hilbert:

Theorem 1.2. For the inclusion Σn,d ⊂ Pn,d equality holds in exactly the following cases:

(1) n = 1 (univariate case).

(2) d = 2 (quadratic forms).

(3) n = 2, d = 4 (in the homogeneous version “ternary quartics”).

We prove 1) and 2). The result in statement 3) is more deep.

Proof. 1) We consider dehomogeneous univariate polynomials. Let p ∈ R[x1] = R[x]

with p ≥ 0. The complex roots of p arise in conjugate pairs, and the real roots have an

even multiplicity. Hence, p(x) has the form

p(x) = r(x)r̄(x)

for some r ∈ C[x]. Let r = p1 + ip2 with p1, p2 ∈ R[x]. Then p(x) = p1(x)2 + p2(x)2 for

x ∈ R.

2) A (homogeneous) quadratic form xT Ax is nonnegative if and only if A � 0, i.e., A is

positive semidefinite. By the Choleski decomposition, this holds true if and only if that

the quadratic form is SOS. �

We consider the SOS relaxation for a global optimization problem.
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For p ∈ R[x1, . . . , xn]:

p♦ := max γ

s.t. p(x) − γ is SOS.

p♦ is a lower bound for the global minimum of p (where we usually assume that this

minimum is finite). In many instances in practical applications, the exact value is found.

A nonzero-gap can be found, e.g., for the Motzkin polynomials. Consider

f(x, z) = M(x, 1, z) = x4 + x2 + z6 − 3x2z2 .

The global minimimum is 0 (which is attained for (x, z) = (1, 1)). The best lower bound

via SOS is

− 729

4096
≈ 0.17798 .

The corresponding SOS decomposition is

f(x, z) +
729

4096
= (−9

8
z + z3)2 +

(
27

64
+ x2 − 3

2
z2

)2

+
5

32
x2 .

An unbounded gap is possible, e.g., for

f(x, y) = M(x, y, 1) = x4y2 + x2y4 + 1 − 3x2y2 .

An improvement of the method (cf. the later sections for constrained opt.) would be to

use representations of rational functions ( Hilbert’s 17th problem)

f(x, y) = M(x, y, 1)

=
(x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2 + 1

4
(xy3 − x3y)2 + 3

4
(xy3 + x3y − 2xy)2

x2 + y2 + 1
≥ 0 .

1.2. A geometric viewpoint. A set K ⊂ Rn is called a cone if the following two

conditions are satisified.

(1) x, y ∈ K ⇒ x + y ∈ K ,

(2) x ∈ K, λ ≥ 0 =⇒ λx ∈ K .

The dual cone K∗ of a cone K is defined by

K∗ = {x ∈ Rn : 〈x, y〉 ≥ 0 for all x ∈ K} .

The set of nonnegative polynomials defines a convex cone (whose dimension is finite for

fixed n, degree d). We would like to understand the dual cone of it. Let us have a look

at the univariate case. Denote by Pd the cone of nonnegative, univariate polynomials



26 2. OPTIMIZATION AND REAL ALGEBRAIC GEOMETRY

p ∈ R[X] of degree d. Further let Md be the positive hull of the vectors y = (y0, . . . , yd),

for which a probability measure µ exists with yi =
∫

X idµ.

Theorem 1.3. For even d we have (Md)
∗ = Pd and (Pd)

∗ = clMd, where cl denotes the

topological closure of a set.

Proof. We only show here the first of the two equations. For each p ∈ (Md)
∗, by

definition we have
∑d

i=0 piyi ≥ 0 für alle y ∈ Md. In particular this also holds true for

the Dirac measure δt, which implies
∑d

i=0 pit
i ≥ 0 for all t ∈ R. Hence p ≥ 0.

Conversely, let p ∈ Pd. For each y ∈ Md there exists a probability measure µ with

yi =
∫

X idµ, which implies

pT y =

d∑

i=0

piyi =

∫

p(X)dµ ≥ 0 ,

i.e. p ∈ (Md)
∗. �

Let

P = {p ∈ R[x1, . . . , xn] : p(x) ≥ 0 for all x ∈ Rn} ,

Σ = {p ∈ R[x1, . . . , xn] : p is SOS}
denote the set of polynomials which are nonnegative on Rn. These are convex cones in

the infinite-dimensional vector space R[x1, . . . , xn].

We can identify an element
∑

α cαxα in the vector space R[x1, . . . , xn] with its coefficient

vector (cα); The dual space of R[x1, . . . , xn] consists of the set of linear mappings on

R[x1, . . . , xn] and each such vector can be identified with a vector in the infinite dimen-

sional space RNn
0 . Topologically, RN is a locally convex space in the topology of pointwise

convergence. We identify the dual space of a space X ⊂ RN with a subspace of RN.

In order to characterize the dual cone P∗, let M denote the set of (infinite) sequences

y = (yα)α∈Nn
0

admitting a representing measure, as well as their multiples (to form a cone).

Let M+ := {y ∈ M : M(y) � 0}, where M(y) is the (infinite) moment matrix

(M(y))Nn
0×Nn

0
with

(M(y))α,β = yα+β .

Theorem 1.4. The cones P and M (resp. Σ and M+) are dual to each other, i.e.

P∗ = M , M∗ = P , Σ∗ = M , (M+)∗ = Σ .

As a corollary, we obtain the following classical result.
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Corollary 1.5. (Hamburger.) For n = 1, we have “M = (M+)”. For n = 2, we have

“M 6= (M+)”.

Proof. The proof follows from Hilbert’s Theorem and duality. �
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2. Semidefinite programming

What is semidefinite programming?

Starting point linear programming:

min cT x

Ax = b

x ≥ 0

Foundations: e.g. Farkas’ Lemma (1894, 1898)

Algorithm: • Simplex algorithmus (Dantzig, 1951); polynomial time question

open

• Ellipsoid algorithm (Khachiyan, 1979); polynomial time, but not practical

• Interior point methods (Karmarkar, 1984); polynomial time; meanwhile for

large-scale problemes competitive to the simplex algorithm

Semidefinite programming:

• Origins: late 70s

• “Linear programming with matrix variabbles”

x ≥ 0

x ∈ Rn  
X � 0

(: ⇐⇒ X ∈ Rn×n is symmetric and positive semidefinite)

• Normalform of an SDP (C ∈ Rn×n symmetrisch, A1, . . . , Am ∈ Rn×n symmetric,

b ∈ Rm)
min〈C, X〉

〈Ai, X〉 = bi, 1 ≤ i ≤ m

X � 0 (X ∈ Rn×n)
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with inner product 〈C, X〉 = Tr(CX) = vec(C)T vec(X).

“Optimization over the cone of positive semidefinite matrices”

From the abstract point of view SDPs are convex optimization problems.

Why is SDP important? For convex optimization problems we have:

• nice theory (duality, etc.)

• theoretically (up to an error ε) solvable in polynomial time; however, this state-

ment is based on the non-practical ellipsoid method

• Theoretical and practical efficiency of interior point methods ... ?

Im Jahr 1991: Nesterov and Nemirovski as well as independently Alizadeh: Ex-

tension of Interior-point methods to SDP.

Nesterov, Nemirovski:

• consider general optimization problems over conces of the form

inf
x

cT x

x ∈ (L + b) ∩ C

with a linear subspace L of Rn as well as a closed, pointed cone C with int C 6= ∅.
• For each such problem there exists a suitable self-concordant barrier function

(smooth, convex functions which are Lipschitz continuous w.r.t. a local metric),

for which Interior-point methods converge. However, in order to obtain good

performance guarantees, barrier function with additional properties are required

(efficient computation of the gradient and the Hesse matrix); these ones only

exist for special cones; in particular for SDP.

For his contributions to this, Yurii Nesterov received in 2000 the Dantzig-Preis, the most-

prestigeous research award in optimization; see Notices of the AMS 48(5), 2001, S. 511.

Beyond these algorithmic properties:

• important special cases (linear programming, quadratic programming)

• important and partially surprisingly good applications in

– combinatorial optimization

– global optimization

– approximation theory

– control theory

– portfolio optimization
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– distance geometry problems in mocelular biology

– . . .

Special classes of semidefinite optimization:

(1) Lineare programming. By restricting X onto diagonal matrices.

(2) Convex-quadratic functions with convex-quadratic constraints. Special case: “qua-

dratic programmierung” (quadratic objective function; linear constraints)

2.1. Positive semidefinite matrices. Notations:

Symmetric matrices: Sn := {X ∈ Rn×n : X = XT} ;

Symmetric positive semidefinite matrices: S+
n := {X ∈ Sn : X � 0

︸ ︷︷ ︸

positive semidefinite

} ;

Symmetric positive definite matrices: S++
n := {X ∈ Sn : X ≻ 0

︸ ︷︷ ︸

positive definite

} .

Remark 2.1. Our positive (semi)-definite matrices are always symmetric. Therefore,

“symmetric” is often omitted.

The following two standard statements (→ lineare algebra) characterize positive (semi)-

definiteness from multiple viewpoints.

Theorem 2.2. For A ∈ Rn×n the following statements are equivalent:

(1) A � 0 ;

(2) xT Ax ≥ 0 für alle x ∈ Rn ;

(3) λmin(A) ≥ 0 ; (smallest eigenvalue)

(4) all principal minors of A are nonnegative;

(5) there exists an L ∈ Rn×n with A = LLT . (Choleski decomposition).

Theorem 2.3. For A ∈ Rn×n the following statements are equivalent:

(1) A ≻ 0 ;

(2) xT Ax > 0 für alle x ∈ Rn \ {0} ;

(3) λmin(A) > 0 ; (smallest eigenvalue)

(4) all principal minors of A are positive;

(5) there exists a regular matrix L ∈ Rn×n with A = LLT .

Remark 2.4. In the latter theorem, (4) is equivalent to

(4’) the leading principal minors
︸ ︷︷ ︸

= determinants of the submatrices A{1,...,k},{1,...,k}

of A are positive.
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Concerning the Choleski decomposition: Let A ∈ S+
n , and let v1, . . . , vn be an

orthonormal system of eigenvectors w.r.t. the eigenvalues λ1, . . . , λn. Then

A = SDST mit S := (v1, . . . , vn), D = diag(λ1, . . . , λn) .

For A1/2 :=
∑n

i=1

√
λiviv

T
i we have A1/2 ·A1/2 = A, and A1/2 is the only positive semidef-

inite matrix with this property.

Inner product: For A, B ∈ Rn×n let

〈A, B〉 := Tr(AT B) = Tr(BT A) = Tr(ABT ) = Tr(BAT )

= vec(A)T vec(B) ,

where vec(A) := (a11, a21, . . . , an1, a12, a22, . . . , ann)T .

Frobenius norm: For A ∈ Rn×n the definition

||A||2F := 〈A, A〉 = Tr(AT A) =
n∑

i,j=1

a2
ij

( =

n∑

i=1

λ2
i , if A ∈ Sn)

defines a norm on Rn×n.

Theorem 2.5. (Féjer.) A matrix A ∈ Sn is positive semidefinite if and only if Tr(AB) ≥ 0

for all B ∈ S+
n (i.e., S+

n is ”‘self-dual”’).

Proof. ”‘=⇒”’: Let A ∈ S+
n and B ∈ S+

n . Then

Tr(AB) = Tr(A1/2A1/2B1/2B1/2)

= Tr(A1/2B1/2B1/2A1/2)

= ||A1/2B1/2||2F (since A, B symmetric)

≥ 0 .

”‘⇐=”’: Let A ∈ Sn and Tr(AB) ≥ 0 for all B ∈ S+
n . Moreover, let x ∈ Rn. For

B := xxT ∈ S+
n this implies

0 ≤ Tr(AB) = Tr(AxxT ) =

n∑

i,j=1

aijxixj = xT Ax ,

i.e., A is positive semidefinite. �
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Theorem 2.6. (Schur complement.) Let

M =

(
A B

BT C

)

with A positive definite and C symmetric. Then we have: M is positive (semi-)definite if

and only if C −BT A−1B is positiv (semi-)definite. The matrix C −BT A−1B is called the

Schur complement of A in M .

Proof. For D := −A−1B we have
(

I 0

DT I

)(
A B

BT C

)

︸ ︷︷ ︸

=MT =M

(
I D

0 I

)

=

(
A 0

0 C − BT A−1B

)

.

The theorem now follows from the fact that a block diagonal matrix is positive (semi-

)definite if and only if the diagonal blocks are positive (semi-)definite and from

X � 0 ⇐⇒ CT XC � 0 for all C ∈ Rn×n .

�

2.2. SDP problems in standard form. We consider SDP in the following standard

form:
inf
X

Tr(CX)

(P) Tr(AiX) = bi , 1 ≤ i ≤ m ,

X � 0 .

The corresponding dual problem is

sup
y,S

bT y

(D)
m∑

i=1

yiAi + S = C ,

S � 0 , y ∈ Rm .

Remark 2.7. (D) is the Lagrange dual to (P).

Notations.

• Optimal values p∗, d∗;

• X (primal) feasible : ⇐⇒ X satisfies the primal constraints; analogously (y, S)

(dual) feasible;

• Primal and dual feasibility region: P, D;
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• sets of optimal solutions:

P∗ := {X ∈ P : Tr(CX) = p∗} ,

D∗ := {(S, y) ∈ D : bT y = d∗} .

Convention: p∗ := ∞ if (P) infeasible (further note that p∗ = −∞ is possible). Analo-

gously for d∗.

Assumptions which are often made:

(1) A1, . . . , Am linearly independent.

In particular, then we have: y is uniquely determined by a dual feasible S ∈ S+
n .

(2) Strict feasibility: There exists an X ∈ P and a S ∈ D with X ≻ 0 and S ≻ 0.

In particular, then Slater’s condition is satisfied.

2.3. Semidefinite programming and sums of squares. For t ∈ N, let St = {α ∈
Nn

0 : α ∈ Nn
0 :
∑n

i=1 αi ≤ t} be the set of monomials of total degree at most t.

Consider a polynomial p ∈ R[X1, . . . , Xn] of even degree 2d. Let Y denote the vector

of all monomials in X1, . . . , Xn of degree at most d; Y consists of
(

n+d
d

)
components. In

the following, we identify a polynomial s = s(X) with a vector of its coefficients. A

polynomial p is a sum of squares,

p =
∑

j

(sj(X))2 with polynomials sj of degree at most d ,

if and only if the coefficient vectors sj of the polynomials sj(X) satisfy

p = Y T
(∑

j

sjs
T
j

)
Y .

By the Choleski decomposition of a matrix this is the case if and only if the matrix
∑

j sjs
T
j

is positive semidefinite. For deciding the SOS-property via semidefinite programming we

record:

Lemma 2.8. A polynomial p ∈ R[X1, . . . , Xn] of degree 2d is a sum of squares if and only

if there exists a positive semidefinite matrix Q with

p = Y T QY .

The size of the SDP (i.e., #rows = # colums of X) :
(

n+d
d

)
. The number of equations is

(
n+2d

d

)
. Hence, this number is polynomial if n or d is fixed.

Hence, deciding the decomposition of an SOS decomposition is an SDP-feasibility problem.
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Remark 2.9. The complexity of the (“exact”) semidefinite feasibility problem SDFP in

the Turing machine model (i.e., is SDFP ∈ P? is still open and one of the most important

open problems concerning the complexity of SDP. If the dimension n or the number of

constraints m are constants, then SDFP is decidable in polynomial time. (Porkolab,

Khachiyan ’97). Hence, if n or d is fixed, then deciding an SOS decomposition can be

done in polynomial time.

2.4. Duality of semidefinite programs.

Definition 2.10. Let X ∈ P und (y, S) ∈ D. Then

Tr(CX) − bT y

is called the duality gap of (P) and (D) in (X, y, S).

Theorem 2.11. (Weak duality theorem for SDP.) Let X ∈ P und (y, S) ∈ D. Then

Tr(CX) − bT y = Tr(SX) ≥ 0 .

Remark 2.12. Besides the weak duality statement, this theorem also gives an explicit

description of the duality gap.

Proof.

Tr(CX) − bT y = Tr

(
( m∑

i=1

yiAi + S
)

X

)

−
m∑

i=1

yi Tr(AiX)

=
m∑

i=1

yi Tr(AiX) + Tr(SX) −
m∑

i=1

yi Tr(AiX)

= Tr(SX)

≥ 0 .

Here, the last step follows due to S � 0, X � 0 from Féjer’s Theorem. �

Theorem 2.13. (Strong duality theorem for SDP). Let d∗ < ∞, and let the dual problem

be strictly feasible. Then we have P∗ 6= ∅ and p∗ = d∗.

Analogously: Let p∗ > −∞, and let the primal problem be strictly feasible. Then D∗ 6= ∅
and p∗ = d∗.

Proof. Let d∗ < ∞ and let the dual problem (D) be strictly feasible.

If b = 0: Dual objective function bT y = 0.

=⇒ X∗ = 0 is optimal for the primal problem (P).
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Hence, let w.l.o.g. b 6= 0.

Define M := {S ∈ Sn : S = C −∑m
i=1 yiAi, bT y ≥ d∗ , y ∈ Rm}. I.e., M contains the

set of symmetric (not necessarily positive semidefinite) matrices, which satisfy the linear

constraints of (D) and whose objective value is larger than or equal to d∗. The idea is to

separate this convex set from the set of positve semiefinite matrices.

The proof is now carried out in 3 steps.

(1) ∃Z ∈ Sn, Z 6= 0 with sup
S∈M

Tr(SZ) ≤ inf
U∈S+

n

Tr(UZ).

(2) ∃β > 0 with Tr(AiZ) = βbi for all i ∈ {1, . . . , m}.
(3) For X∗ := 1

β
Z we have X∗ ∈ P and Tr(CX∗) = d∗.

(1) Show: relint(M) ∩ relint(S+
n )

︸ ︷︷ ︸

S++
n

= ∅.

Assumption: There exists an S ∈ M ∩ S++
n .

=⇒ d∗ cannot be the optimal value of (D). ∆

Identify Sn with R
1
2
n(n+1), and use svec(A)T svec(B) = Tr(AB) for A, B ∈ Sn (where

svec(A) := (a11,
√

2a12, . . . ,
√

2a1n, a22,
√

2a23, . . . , ann)T

).

By the separation theorem of convex analysis, there exists a Z ∈ Sn, Z 6= 0 with

sup
S∈M

Tr(SZ) ≤ inf
U∈S+

n

Tr(UZ) .

︸ ︷︷ ︸

= 0 oder −∞
︸︷︷︸

not possible, since M 6=∅

, because S+
n cone

Moreover, we have: The statement inf
U∈S+

n

Tr(UZ) = 0

︸ ︷︷ ︸

=⇒(Féjer)Z�0

implies sup
S∈M

Tr(SZ) ≤ 0.

(2) Show: On the halfspace {y ∈ Rm : bT y ≥ d∗}, the linear function

f(y) :=
∑m

i=1 yiTr(AiZ) is bounded from below (by Tr(CZ)).
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Let y
︸︷︷︸

uniquely determines an S ∈ M

∈ Rm with bT y ≥ d∗. Then

f(y) =

m∑

i=1

yiTr(AiZ) = −Tr((S − C)Z)

= −Tr(SZ) + Tr(CZ)

≥ Tr(CZ) . ∆

Therefore there exists a β ≥ 0 such that Tr(AiZ) = βbi forr all i ∈ {1, . . . , m} (since

otherwise one can make f on the halfspace.)

Show: β > 0.

Assumption: β = 0.

Then Tr(AiZ) = 0, 1 ≤ i ≤ m, and therefore Tr(CZ) ≤ 0.

By assumption there exist a (y◦, S◦) ∈ D with S◦ ≻ 0. Hence,

Tr(S◦Z) = Tr(CZ) −
m∑

i=1

y◦
i Tr(AiZ)

= Tr(CZ) ≤ 0 .

This is a contradiction, since Z � 0 and S◦ ≻ 0 imply that Tr(S◦Z) > 0 (due to Féjer,

continuity, Z 6= 0). ∆

Hence, β > 0.

(3) For X∗ := 1
β
Z � 0 we have

Tr(AiX
∗) = bi , 1 ≤ i ≤ m (i.e. X∗ ∈ P)

=⇒ Tr(CX∗) ≤ bT y for all y ∈ Rm with bT y ≥ d∗

=⇒ Tr(CX∗) ≤ d∗

The weak Duality Theorem implies Tr(CX∗) = d∗, i.e., X∗ ∈ P∗.

The statement for which p∗ > −∞ and strict feasibility of the primal problem is as-

sumed, can be proved analogously (or by exploiting symmetric (conic) formulations of the

problems). �
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Notes and references. For an introduction to semidefinite programming see the

book of De Klerk or the survey article by Vandenberghe and Boyd.

• E. De Klerk. Aspects of Semidefinite Programming. Kluwer, 2002.

• L. Vandenberghe, S. Boyd: Semidefinite programming. SIAM Review 38:49–95,

1996.

3. Algebraic certificates and Positivstellensätze

If one can provide a representation of a polynomial p as a sum of squares, this repre-

sentation yields a certificate, i.e., a proof for the nonnegativity of p. The question of

certificates plays an important role in optimization and for algorithmic purposes. One of

the most well-known forms of such certificates can be found in Farkas’ Lemma in linear

optimization (which can be formulated in various variants). In the following let

K = {x ∈ Rn : gi(x) ≥ 0 , 1 ≤ i ≤ m}
denote the feasible area of a system

(3.1)

inf p(x)

s.t. gi(x) ≥ 0 , 1 ≤ i ≤ m ,

x ∈ Rn

with polynomials gi ∈ R[X1, . . . , Xn].

Theorem 3.1. Let p and g1, . . . , gm be affine-linear functions. If p is nonnegative on K,

then there exist scalars λ1, . . . , λm ≥ 0 with

p =

m∑

j=1

λjgj .

Hence, providing nonnegative scalars λ1, . . . , λm yields a certificate for the nonnegativity

of the affine function p on K. A generalization of Farkas’ lemma to convex sets is:

Theorem 3.2. Let K convex, and let both p : K → R as well as g1, . . . , gm : K → R be

convex functions. Moreover, one of the following two conditions holds:

(1) There exists an x ∈ Rn with g1(x) > 0, . . . , gm(x) > 0 (Slater condition).

(2) The functions g1, . . . , gm are affine.

If p is nonnegative on K, then there exist λ1, . . . , λm ≥ 0 with

p =
m∑

j=1

λjgj .
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The question of solutions to a systems of polynomial equations is one of the roots of

algebraic geometry. Hilbert’s Nullstellensatz, which establishes a connection between the

algebraic varieties in Cn and the ideals in in C[X1, . . . , Xn], yields a certificate for the

nonexistence of a system of polynomial equations. Denoting the ideal generated by given

polynomials f1, . . . , fr ∈ C[X1, . . . , Xn] by I(f1, . . . , fr), we have:

Theorem 3.3. (Hilbert’s Nullstellensatz.) The following two statements are equivalent:

(1) The set {x ∈ Cn : fi(x) = 0 für 1 ≤ i ≤ r} is empty.

(2) 1 ∈ I(f1, . . . , fr), i.e., there exist g1, . . . , gr ∈ C[X1, . . . , Xn] with

(3.2) f1g1 + · · · + frgr = 1 .

Initiated by the question of algorithmically determining such an algebraic certificate, the

theory of Gröbner bases has developed. Hereby, the inherent difficulty is that the de-

grees of the polynomials in the representation (3.2) can grow doubly exponentially in the

dimension n.

An analogon for real algebraic problems was proven by Krivine and Stengle (for the

historical development see the book of Prestel, Delzell: Positive Polynomials). This Pos-

itivstellensatz guarantees the existence of a certificate for nonnegativity. For this, let

A(f1, . . . , fr) the algebraic cone generated by the polynomials f1, . . . , fr, i.e.,

A(f1, . . . , fr) =
{
p ∈ R[X1, . . . , Xn] : p =

∑

I⊆{1,...,n}

sI

∏

i∈I

fi

}

with polynomials sI ∈ Σ, where

Σ = {p ∈ R[X1, . . . , Xn] : p is a sum of squares} .

Moreover, let M(g1, . . . , gs) be the monoid defined by the polynomials g1, . . . , gs, i.e., the

set of (finite) products of the polynomials including the empty product.

Theorem 3.4. (Positivstellensatz.) For polynomials f1, . . . , fr, g1, . . . , gs, h1, . . . , ht ∈
R[X1, . . . , Xn] the following statements are equivalent:

• The set

K := {x ∈ Rn : fi(x) ≥ 0, gj(x) 6= 0, hk(x) = 0 ∀i, j, k}

is empty.

• There exist polynomials F ∈ A(f1, . . . , fr), G ∈ M(g1, . . . , gs) and H ∈ I(h1, . . . , ht)

with

F + G2 + H = 0 .
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Thus, a polynomial p is nonnegative on the set K = {x ∈ Rn : gi(x) ≥ 0 , 1 ≤ i ≤ m}
if there exist a k ∈ N0 and an F ∈ A(−p, g1, . . . , gm) with F + p2k = 0. In order to

minimize a polynomial on a set K, the task is therefore to determine the largest γ such

that the polynomial p − γ has such a certificate. In this way, we can also consider the

algebraic certifcates for the nonnegativity of polynomials on a semialgebraic set K from

the viewpoint of optimization.

The main concern in this way of proceeding is that the existing proofs of the Positivstel-

lensatz are nonconstructive, i.e., they do not yield an algorithmic method to determine

a certificate. In particular, the degrees of the required polynomials F , G and H can be

quite large. The best published bound is n-fold exponential. For the case that there are

only equality constraints (“real Nullstellensatz”), an improvement – to 3-fold exponential

– was announce by Lombardi and Roy.

Under certain restrictions to the semialgebraic set K “better suited” forms of Positivstel-

lensätze can be provided. In view of the connection to optimization, the subsequently

discussed version of Putinar has turned out to be particularly useful. For polynomials

g1, . . . , gm ∈ R[X1, . . . , Xn], let

QM(g1, . . . , gm) := {s0 + s1g1 + · · · + smgm : s0, . . . , sm ∈ Σ}

denote the quadratic module generated by g0, . . . , gm.

Theorem 3.5. (Putinar’s Positivstellensatz.) Assume that there exists an N ∈ N with

N −∑X2
i ∈ QM(g1, . . . , gm). Then each strictly positive polynomial on K is contained

in QM(g1, . . . , gm), i.e., it has a representation of the form

(3.3) p = s0 + s1g1 + · · · + smgm

with s0, . . . , sm ∈ Σ.

Conversely, it is of course evident that each polynomial of the form (3.3) is nonnegative

on K.

The representation in Theorem 3.5 has a quite simple structure, and it characterizes (in

contrast to Theorem 3.4) a representation of the polynomial p itself (rather than e.g. only

a product of an SOS-polynomial with p).

Example 3.6. The strict positivity in the precondition to Putinar’s statement is essentiall,

already in the univariate case. This can be seen in the example

min 1 − x2

s.t. (1 − x2)3 ≥ 0
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1

1

Figure 1. Graph of p(X) = 1 − X2.

(see Figure 1). The feasible set K is the interval K = [−1, 1], and hence the minima

of the objective function p are at x = −1 and x = 1, both with function value 0. The

precondition of Putinar’s theorem satisfied since

2

3
+

4

3

(
X3 − 3

2
X
)2

+
4

3

(
1 − X2

)3
= 2 − X2 .

If a representation of the form (3.3) existed, i.e.,

(3.4) 1 − X2 = s0(X) + s1(X)(1 − X2)3 with s0, s1 ∈ Σ2 ,

the the right hand side of (3.4) must vanish at x = 1 as well. The second term has at 1

a zero of at least third order, so that s0 vanishes at 1 as well; by the SOS-condition this

zero of s0 is of order at least 2. Altogether, on the right hand side we have at 1 a zero of

at least second order, in contradiction to the order 1 of the left side. Thus there exists no

representation of the form (3.4).

References:

• A. Prestel, C. Delzell. Positive Polynomials. Springer-Verlag, Berlin, 2001.

• M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univ.

Math. J. 42:969–984, 1993.

• C. Riener, T. Theobald. Positive Polynome und semidefinite Programmierung.

Preprint, 2007.

4. Constrained optimization

Once more, we consider the general constrained problem (3.1) and assume that there

exists an N ∈ N with N − X2
1 ∈ QM(g1, . . . , gm). From the practical viewpoint this is

no problem, since we can just add an inequality
∑

x2
i ≤ N with a large N which causes

that only solutions in a large ball around the origin are considered. Sinc in case of the

mentioned precondition K is compact, Putinar’s Positivstellensatz implies

p∗ = sup γ

s.t. p(x) − γ ∈ QM(g1, . . . , gm) .
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The dual (functionalanalytic) analogon to the (algebraic) Positivstellensatz of Putinar

can be formulated as follows: Let K be given by polynomials gi, and let (yα) be an

infinite sequence which is indexed by elements Nn
0 (corresponding to the monomials in

X1, . . . , Xn). Under Putinar’s condition it can be verified that a representing measure µ

with supporting set K exists if and only if the matrices

(4.1) Mr(y) � 0 , Mr(gi ∗ y) � 0 (1 ≤ i ≤ m, r ≥ 0)

are positive semidefinite, where for a polynomial h localisation matrices on the right hand

side are defined by

(Mr(h ∗ y))α,β :=
∑

γ∈Nn
0

hγyα+β+γ , |α|, |β| ≤ r .

As mentioned before the infinite-dimensional cone QM(g1, . . . , gm) cannot be handled

easily from a practical point of view. By restricting the degrees we replace it by a hierarchy

of finite-dimensional cones.

Let k0 = max
{
⌈deg p

2
⌉, ⌈deg g1

2
⌉, . . . , ⌈deg gm

2
⌉
}
, and for k ≥ k0 let

a∗
k := sup γ

s.t. p − γ = s0 +
∑m

j=1 sjgj ,

where s0, . . . , sm ∈ Σ with

deg(s0), deg(s1g1), . . . , deg(smgm) ≤ 2k .

For each admissible k, by Lemma 2.8 this problem can be formulated as a semidefinite

program. The dual semidefinite program results from the “truncated” finite version of

the moment problem (4.1),

b∗k := inf pT y

s.t. y0 = 1 ,

Mk(y) � 0 ,

M
k−⌈

deg gj

2
⌉
(gj ∗ y) � 0 , 1 ≤ j ≤ m ,

where the Mk are the truncated versions of the localization matrices.

Theorem 4.1. (1) For each admissible k we have a∗
k ≤ b∗k.

(2) If Putinar’s condition holds, we have

lim
k→∞

a∗
k = lim

k→∞
b∗k = p∗ .

Proof. The first statement immediately follows from weak duality.

For the second statements we first note that for each ε > 0 the polynomial p − p∗ + ε is

strictly positive on K. By Putinar’s Positivstellensatz p − p∗ + ε has a representation of
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the form (3.3). Hence, there exists a k with a∗
k ≥ p∗ − ε. Passing over to the limit ε ↓ 0,

this shows the claim. �

For k ≥ k0 this defines a hierarchy of semidefinite programs whose optimal values con-

verges monotoneously to the optimum. It is possible that the optimum is reached already

after finitely many steps (“finite convergence”). However, already to decide whether a

value b∗k obtained in the k-th relaxation is the optimal value is not easy. There only exist

sufficient conditions.

Theorem 4.2. Let k ≥ k0, y be an optimal value of the SDPs for b∗k, and let d =

max
{

⌈deg g1⌉
2

, . . . , ⌈deg gm⌉
2

}

. If rank Mk(y) = rankMk−d(y), then b∗k = p∗.

In the special case of 0-1-Problems we always have finite convergence.

Example 4.3. For n ≥ 2 we consider the (parametric) optimization problem

(4.2) min

n+1∑

i=1

x4
i s.t.

n+1∑

i=1

x3
i = 0 ,

n+1∑

i=1

x2
i = 1 ,

n+1∑

i=1

xi = 0

in the n variables x1, . . . , xn. Systems of this type occur in the investigation of symmetric

simplices. In order to show that a number α is a lower bound for the optimal value

of (4.2), it suffices (due to the compactness of the feasible set) to show the existence

of such a representation for f(x) :=
∑n+1

i=1 x4
i − α + ε in view of g1(x) :=

∑n+1
i=1 x3

i ,

g2(x) := −∑n+1
i=1 x3

i , g3(x) :=
∑n+1

i=1 x2
i − 1, g4(x) := −∑n+1

i=1 x2
i + 1, g5(x) :=

∑n+1
i=1 xi,

g6(x) := −∑n+1
i=1 xi for each ε > 0. For the case of odd n in (4.2) there exists a simple

polynomial identity

(4.3)
n+1∑

i=1

x4
i −

1

n + 1
=

2

n + 1

(
n+1∑

i=1

x2
i − 1

)

+
n+1∑

i=1

(

x2
i −

1

n + 1

)2

,

which shows that the minimum is bounded from below by 1/(n + 1); and since this value

is attained at x1 = . . . = x(n+1)/2 = −x(n+3)/2 = . . . = −xn+1 = 1/
√

n + 1, the minimum

is 1/(n + 1). For each ε > 0 adding ε on both sides of (4.3) yields a representation of the

positive polynomial in the quadratic module QM(g1, . . . , g6). For each odd n this only

uses polynomials sigi of (total) degree at most 4.

For the case n even (with minimum 1/n) the situation looks different. A computer calcu-

lation with the software GloptiPoly shows that already for n = 4 it is necessary to go

until degree 8 in order to obtain a Positivstellensaty-type certificate for optimality.

References:
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CHAPTER 3

Tropical geometry

1. Introduction to tropical geometry

Tropical geometry denotes a young mathematical discipline in which the basic operations

are performed over the semiring (R, min, +) (or (R, max, +). The name “tropical” was

coined by French mathematicians, including Jean-Eric Pin, to honor the pioneering work

of their Brazilian colleague Imre Simon on the max-plus algebra.

Tropical geometry can be seen as the geometry resulting from a degeneration process of

toric geometry. As a consequence of this process, complex toric varieties can be replaced

by the real space Rn and complex algebraic varieties by polyhedral cell complexes.

The origins of the tropical degeneration ideas go back to Viro’s patchworking method (in

the 70’s), to the Bergman complex (in the 70’s), and to Maslov’s dequantization of positive

real numbers (in the 80’s). As a consequence of these developments, in different areas

of mathematics different names were used for tropical varieties: logarithmic limit sets,

Bergman fans, Bieri-Groves sets, and non-archimedean amoebas. In the last years, the

various research directions have been fruitfully merged, generalized and advanced under

what is now called tropical geometry. These developments were based on substantial

progress in understanding the concept of an amoeba that was introduced by I. Gelfand,

M. Kapranov and A. Zelevinsky (in the early 90’s) as the logarithmic image of a complex

variety.

While the roots of tropical geometry come from algebraic geometry and valuation theory,

tropical varieties are profitably approached via polyhedral combinatorics. In fact, trop-

ical hypersurfaces can be defined in a combinatorial and in an algebraic way. For the

combinatorial definition, let (R,⊕,⊙) denote the tropical semiring, where

x ⊕ y = min{x, y} and x ⊙ y = x + y .

Sometimes the underlying set R of real numbers is augmented by ∞.

A tropical monomial is an expression of the form c ⊙ xα = c ⊙ xα1
1 ⊙ · · · ⊙ xαn

n where the

powers of the variables are computed tropically as well (e.g., x3
1 = x1 ⊙ x1 ⊙ x1). This

43
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tropical monomial represents the classical linear function

Rn → R , (x1, . . . , xn) 7→ α1x1 + · · · + αnxn + c .

A tropical polynomial is a finite tropical sum of tropical monomials and thus represents

the (pointwise) minimum function of linear functions. At each given point x ∈ Rn the

minimum is either attained at a single linear function or at more than one of the linear

functions (“at least twice”). The tropical hypersurface T (f) of a tropical polynomial f is

defined by

T (f) = {x ∈ Rn : the minimum of the tropical monomials of f

is attained at least twice at x} .

Considering f as a concave, piecewise linear function, Figure 1 shows the graph of f and

the resulting curve T (f) ⊂ R2 for a quadratic tropical polynomial.

e

d+y
f+x

c+2y
a+2x b+x+y

Figure 1. The graph of a concave, piecewise linear function on R2.

1.1. The geometry of tropical hypersurfaces. Let A ⊂ Nn
0 be finite and f(x1, . . . ,

xn) =
⊕

α∈A cα · xα be a tropical polynomial with cα ∈ R for all α ∈ A. Then T (f) is a

polyhedral complex in Rn which is geometrically dual to the following regular subdivision

of the Newton polytope New(f) of f . Let P̂ be the convex hull conv{(α, cα) ∈ Rn+1 :

α ∈ A}. Then the lower faces of P̂ project bijectively onto convA under deletion of the

last coordinate, thus defining a subdivision of A. Such subdivisions are called regular or

coherent. We say that a tropical polynomial is of degree at most d if every term has (total)

degree at most d. See Figure 2 for an example of a tropical line (i.e., the tropical variety

of a linear polynomial in two variables) and Figure 3 for an example of a tropical cubic

curve, as well as their dual subdivisions (whose coordinate axes are directed to the left

and to the bottom to visualize the duality).
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1

1

x1

x2

1

1

x1

x2

Figure 2. The tropical curve of a linear polynomial f in two variables and

the Newton polygon of f .

1

1

x1

x2

Figure 3. An example of a tropical cubic curve T (f) and the dual subdi-

vision of the Newton polygon of f .

Tropical hypersurfaces of homogeneous polynomials naturally live in tropical projective

space TPn−1 = Rn/R(1, 1, . . . , 1).

Example 1.1. Quadratic curves in the plane are defined by tropical quadrics

f = a1 ⊙ x⊙ x ⊕ a2 ⊙ x⊙ y ⊕ a3 ⊙ y ⊙ y ⊕ a4 ⊙ y ⊙ z ⊕ a5 ⊙ z ⊙ z ⊕ a6 ⊙ x⊙ z.

The curve T (f) is a graph which has six unbounded edges and at most three bounded

edges. The unbounded edges are pairs of parallel half rays in the three coordinate direc-

tions. The number of bounded edges depends on the 3 × 3-matrix

(1.1)





a1 a2 a6

a2 a3 a4

a6 a4 a5



 .

We regard the row vectors of this matrix as three points in TP2. If all three points are

identical then T (f) is a tropical line counted with multiplicity two. If the three points

lie on a tropical line then T (f) is the union of two tropical lines. Here the number of
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bounded edges of T (f) is two. In the general situation, the three points do not lie on a

tropical line. Up to symmetry, there are five such general cases:

Case a: T (f) looks like a tropical line of multiplicity two (depicted in Figure 4 a)). This

happens if and only if

2a2 ≥ a1 + a3 and 2a4 ≥ a3 + a5 and 2a6 ≥ a1 + a5 .

Case b: T (f) has two double half rays: There are three symmetric possibilities. The one

in Figure 4 b) occurs if and only if

2a2 ≥ a1 + a3 and 2a4 ≥ a3 + a5 and 2a6 < a1 + a5 .

Case c: T (f) has one double half ray: The double half ray is emanating in the y-direction

if and only if

2a2 < a1 + a3 and 2a4 < a3 + a5 and 2a6 ≥ a1 + a5 .

Figure 4 c) depicts the two combinatorial types for this situation. They are distinguished

by whether 2a2 + a5 − a1 − 2a4 is negative or positive.

a) b) c)

Figure 4. Types of non-proper tropical conics in TP2.

Case d: T (f) has one vertex not on any half ray. This happens if and only if

a2 + a4 < a3 + a6 and a2 + a6 < a1 + a4 and a4 + a6 < a2 + a5 .

If one of these inequalities becomes an equation, then T (f) is a union of two lines.

Case e: T (f) has four vertices and each of them lies on some half ray. Algebraically,

2a2 < a1 + a3 and 2a4 < a3 + a5 and 2a6 < a1 + a5

and (a2 + a4 > a3 + a6 or a2 + a6 > a1 + a4 or a4 + a6 > a2 + a5) .

The curves in cases d) and e) are called proper conics. They are shown in Figure 5. The

set of proper conics forms a polyhedral cone. Its closure in TP5 is called the cone of proper
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d) e)

Figure 5. Types of proper tropical conics in TP2.

conics. This cone is defined by the three inequalities

(1.2) 2a2 ≤ a1 + a3 and 2a4 ≤ a3 + a5 and 2a6 ≤ a1 + a5 .

All the edges in a tropical curve T (f) have a natural multiplicity, which is the lattice

length of the corresponding edge in the dual subdivision ∆. Let p be a vertex of the

tropical curve T (f), let v1, v2, . . . , vr be the primitive lattice vectors in the directions of

the edges emanating from p, and let m1, m2, . . . , mr be the multiplicities of these edges.

Then the following equilibrium condition holds:

(1.3) m1 · v1 + m2 · v2 + · · · + mr · vr = 0.

The validity of this identity can be seen by considering the convex r-gon dual to p in the

subdivision ∆. The edges of this r-gon are obtained from the vectors mi ·vi by a 90 degree

rotation. But, clearly, the edges of a convex polygon sum to zero.

The next theorem states that this equilibrium condition actually characterizes tropical

curves in TP2. This remarkable fact provides an alternative definition of tropical curves.

A subset Γ of TP2 is a rational graph if Γ is a finite union of rays and segments whose

endpoints and directions have coordinates in the rational numbers Q, and each ray or

segment has a positive integral multiplicity. A rational graph Γ is said to be balanced if

the condition (1.3) holds at each vertex p of Γ.

Theorem 1.2. The tropical curves in TP2 are the balanced rational graphs.

This can be generalized to hypersurfaces in tropical projective space TPn−1.

A tropical prevariety is the intersection of tropical hypersurfaces. If f1, . . . , fm are linear

polynomials then the tropical prevariety P =
⋂m

i=1 T (fi) is called linear. If additionally

P is a tropical variety, then it is called a linear tropical variety. In dimension 2, a linear

tropical variety is either a translate of the left-hand set in Figure 2, a classical line (in

the x1-, x2-, or the main diagonal direction), a single point, or the empty set. A tropical



48 3. TROPICAL GEOMETRY

prevariety in R2 can also be a one-sided infinite ray. Understanding the geometry and

combinatorics of tropical prevarieties or varieties (as defined in the next section) in general

dimension is still a widely open problem.

With respect to our investigations on the consistency problem, we remark that there

are linear tropical spaces of dimension n − 2 which are not complete intersections, i.e.,

which are not the intersection of two tropical hypersurfaces (see the paper of Speyer and

Sturmfels on the tropical Grassmannian).
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2. Algebraic techniques

Besides the polyhedral viewpoint from the last section there is an algebraic viewpoint

on tropical geometry. This algebraic viewpoint does not only allow to define tropical

hypersurfaces, but also to define general tropical varieties. Rather than simply intersecting

tropical hypersurfaces, the definition of tropical varieties of arbitrary codimension involves

a valuation theoretic construction.

2.1. Tropical varieties. Let K = C(t) denote the algebraically closed field of Puiseux

series, i.e., series of the form

p(t) = c1t
q1 + c2t

q2 + c3t
q3 + · · ·

with ci ∈ C\{0} and rational q1 < q2 < · · · with common denominator. The order ord p(t)

is the exponent of the lowest-order term of p(t). The order of an n-tuple of Puiseux series

is the n-tuple of their orders. This gives a map

(2.1) ord : (K∗)n → Qn ⊂ Rn ,

where K∗ = K \ {0}.

We are extending T to allow also ideals in the polynomial ring K[x1, . . . , xn] as argument.

Let I be an ideal in K[x1, . . . , xn], and consider its affine variety V(I) ⊂ (K∗)n over K.
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O O

Figure 6. Lines in the tropical plane satisfy our Requirement.

The image of V(I) under the map (2.1) is a subset of Qn. The tropical variety T (I) is

defined as the topological closure of this image, T (I) = ord V (I). It is well-known that

for principal ideals I = 〈g〉 the two definitions of tropical varieties coincide.

Proposition 2.1. If f is a tropical polynomial in x1, . . . , xn then there exists a polynomial

g ∈ K[x1, . . . , xn] such that T (f) = T (〈g〉), and vice versa.

For a polynomial f =
∑

α∈A cα(t)xα ∈ K[x1, . . . , xn] with a finite support set A ⊂ Nn
0 and

cα(t) 6= 0 for all α ∈ A, the tropicalization of f is defined by

trop f =
⊕

α∈A

ord(cα(t)) ⊙ xα ,

where
⊕

denotes a tropical summation. Whenever there is no possibility of confusion we

also write · instead of ⊙.

For every tropical variety T (I) there exists a finite subset B ⊂ I such that T (I) =
⋂

f∈B T (f). (However, we remark that Corollary 2.3 in Speyer’s and Sturmfels’ paper on

the tropical Grassmannian which claims that any universal Gröbner basis of I satisfies

this condition, is not correct.)

We remark that there are linear tropical spaces of dimension n − 2 which are not com-

plete intersections, i.e., which are not the intersection of two tropical hypersurfaces (see

Proposition 6.3 in Speyer’s and Sturmfels’ paper on the tropical Grassmannian).

2.2. Bézout’s Theorem. In classical projective geometry, Bézout’s Theorem states

that the number of intersection points of two general curves in the complex projective

plane is the product of the degrees of the curves. In this section we prove the same

theorem for tropical geometry. The first step is to clarify what we mean by a curve of

degree d.
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A tropical polynomial f is said to be a tropical polynomial of degree d if its support A is

equal to the set {(i, j, k) ∈ N3
0 : i + j + k = d}. Here the coefficients aijk can be any

real numbers, including 0. Changing a coefficient aijk to 0 does not alter the support of a

polynomial. After all, 0 is the neutral element for multiplication ⊙ and not for addition

⊕. Deleting a term from the polynomial f and thereby shrinking its support corresponds

to changing aijk to +∞. If f is a tropical polynomial of degree d then we call T (f) a

tropical curve of degree d.

Example 2.2. Let d = 2 and consider the following tropical polynomials:

f1 = 3x2 ⊕ 5xy ⊕ 7y2 ⊕ 11xz ⊕ 13yz ⊕ 17z2,

f2 = 3x2 ⊕ 5xy ⊕ 7y2 ⊕ 11xz ⊕ 13yz ⊕ 0z2,

f3 = 0x2 ⊕ 0xy ⊕ 0y2 ⊕ 0xz ⊕ 0yz ⊕ 0z2,

f4 = 3x2 ⊕ 5xy ⊕ 7y2 ⊕ 11xz ⊕ 13yz ⊕ (+∞)z2,

f5 = 3x2 ⊕ 5xy ⊕ 7y2 ⊕ 11xz ⊕ 13yz.

T (f1), T (f2) and T (f3) are tropical curves of degree 2. T (f4) = T (f5) is a tropical curve,

but it does not have a degree d. �

In order to state Bézout’s Theorem, we need to define intersection multiplicities for two

balanced rational graphs in TP2. Consider two intersecting line segments with rational

slopes, where the segments have multiplicities m1 and m2 and where the primitive direction

vectors are (u1, u2, u3), (v1, v2, v3) ∈ Z3/Z(1, 1, 1). Since the line segments are not parallel,

the following determinant is nonzero:

det





u1 u2 u3

v1 v2 v3

1 1 1





The (tropical) multiplicity of the intersection point is defined as the absolute value of this

determinant times m1 times m2.

Theorem 2.3. Consider two tropical curves C and D of degrees c and d in the tropical

projective plane TP2. If the two curves intersect in finitely many points then the number

of intersection points, counting multiplicities, is equal to c · d.

We say that the curves C and D intersect transversally if each intersection point lies in

the relative interior of an edge of C and in the relative interior of an edge of D. Theorem

2.3 is now properly stated for the case of transversal intersections. Figure 7 shows a

non-transversal intersection of a tropical conic with a tropical line. In the left picture

a slight perturbation of the situation is shown. It shows that the point of intersection

really comes from two points of intersection and has to be counted with the multiplicity
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B

A
B

A

Figure 7. Non-transversal intersection of a line and a conic.

that is the sum of the two points in the nearby situation. We will first give the proof of

Bézout’s Theorem for the transversal case, and subsequently we will discuss the case of

non-transversal intersections.

Proof. The statement holds for curves in special position for which all intersection points

occur among the half rays of the first curve in x-direction and the half rays of the second

curve in y-direction. Such a position is shown in Figure 8.

Figure 8. Two conics intersect in four points.

The following homotopy moves any instance of two transversally intersecting curves to

such a special situation. We fix the first curve C and we translate the second curve D

with constant velocity along a sufficiently general piecewise linear path. Let Dt denote the

curve D at time t ≥ 0. We can assume that for no value of t a vertex of C coincides with a

vertex of Dt and that for all but finitely many values of t the two curves C and Dt intersect

transversally. Suppose these special values of t are the time stamps t1 < t2 < · · · < tr.

For any value of t strictly between two successive time stamps ti and ti+1, the number of

intersection points in C ∩ Dt remains unchanged, and so does the multiplicity of each

intersection point. We claim that the total intersection number also remains unchanged

across a time stamp ti.



52 3. TROPICAL GEOMETRY

Let P be the set of branching points of C which are also contained in Dti and the set of

branching points of Dti which are also contained in C. Since P is finite it suffices to show

the invariance of intersection multiplicity for any point p ∈ P . Either p is a vertex of C

and lies in the relative interior of a segment of Dti , or p is a vertex of Dti and lies in the

relative interior of a line segment of C. The two cases are symmetric, so we may assume

that p is a vertex of Dti and lies in the relative interior of a segment S of C. Let ℓ be the

line underlying S and u be the weighted outgoing direction vector of p along ℓ. Further

let v(1), . . . , v(k) and w(1), . . . , w(l) be the weighted direction vectors of the outgoing edges

of p into the two open half planes defined by ℓ. At an infinitesimal time t before and after

ti the total intersection multiplicities at the neighborhoods of p are

m′ =

k∑

i=1

∣
∣
∣
∣
∣
∣

det





u1 u2 u3

v
(i)
1 v

(i)
2 v

(i)
3

1 1 1





∣
∣
∣
∣
∣
∣

and m′′ =

l∑

j=1

∣
∣
∣
∣
∣
∣

det





u1 u2 u3

w
(j)
1 w

(j)
2 w

(j)
3

1 1 1





∣
∣
∣
∣
∣
∣

.

Since within each of the two sums the determinants have the same sign, equality of m′

and m′′ follows immediately from the equilibrium condition at p.

In case of a non-transversal intersection, the intersection multiplicity is the (well-defined)

multiplicity of any perturbation in which all intersections are transversal (see Figure 7).

The validity of this definition and the correctness of Bézout’s theorem now follows from

our previous proof for the transversal case. �

The statement of Bézout’s Theorem is also valid for the intersection of n − 1 tropical

hypersurfaces of degrees d1, d2, . . . , dn−1 in TPn−1. If they intersect in finitely many points,

then the number of these points (counting multiplicities) is always d1d2 · · · dn−1. Moreover,

also Bernstein’s Theorem for sparse systems of polynomial equations remains valid in the

tropical setting. This theorem states that the number of intersection points always equals

the mixed volume of the Newton polytopes.

Families of tropical complete intersections have an important feature which is not familiar

from the classical situation, namely, intersections can be continued across the entire pa-

rameter space of coefficients. We explain this for the intersection of two curves C and D

of degrees c and d in TP2. Suppose the (geometric) intersection of C and D is not finite.

Pick any nearby curves Cǫ and Dǫ such that Cǫ and Dǫ intersect in finitely many points.

Then Cǫ ∩ Dǫ has cardinality cd.

Theorem 2.4. The limit of the point configuration Cǫ ∩ Dǫ is independent of the choice

of perturbations. It is a well-defined subset of cd points in C ∩ D.

Of course, as always, we are counting multiplicities in the intersection Cǫ ∩ Dǫ and hence

also in its limit as ǫ tends to 0. This limit is a configuration of points with multiplicities,
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where the sum of all multiplicities is cd. We call this limit the stable intersection of the

curves C and D, and we denote this multiset of points by

C ∩st D = lim
ǫ→0

(Cǫ ∩ Dǫ).

Hence we can strengthen the statement of Bézout’s Theorem as follows:

Corollary 2.5. Any two curves of degrees c and d in the tropical projective plane TP2

intersect stably in a well-defined set of cd points, counting multiplicities.

A B
A B A B

Figure 9. Stable intersections of a line and a conic.

The proof of Theorem 2.4 follows from our proof of the tropical Bézout’s Theorem. We

shall illustrate the statement by two examples. Figure 9 shows the stable intersections of

a line and a conic. In the first picture they intersect transversally in the points A and B.

In the second picture the line is moved to a position where the intersection is no longer

transversal. The situation in the third picture is even more special. However, observe

that for any nearby transversal situation the intersection points will be close to A and

B. In all three pictures, the pair of points A and B is the stable intersection of the line

and the conic. In this manner we can construct a continuous piecewise linear map which

maps any pair of conics to their four intersection points.

A

B

C

D

A

B

C

D

A

B

C

D

Figure 10. The stable intersection of a conic with itself.

Figure 10 illustrates another fascinating feature of stable intersections. It shows the

intersection of a conic with a translate of itself in a sequence of three pictures. The points

in the stable intersection are labeled A, B, C, D. Observe that in the third picture, where
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the conic is intersected with itself, the stable intersections coincide with the four vertices

of the conic. The same works for all tropical hypersurfaces in all dimensions. The stable

self-intersection of a tropical hypersurface in TPn−1 is its set of vertices, each counted

with an appropriate multiplicity.

Definition 2.6. A tropical linear space is a subset of tropical projective space TPn−1 of

the form T (I) where the ideal I is generated by linear forms

p1(t) · x1 + p2(t) · x2 + · · · + pn(t) · xn

with coefficients pi(t) ∈ K.

Example 2.7. A line in three-space is the tropical variety T (I) of an ideal I which is

generated by a two-dimensional space of linear forms in K[x1, x2, x3, x4]. A tropical basis

of such an ideal I consists of four linear forms,

U =
{

p12(t) · x2 + p13(t) · x3 + p14(t) · x4,

−p12(t) · x1 + p23(t) · x3 + p24(t) · x4,

−p13(t) · x1 − p23(t) · x2 + p34(t) · x4,

−p14(t) · x1 − p24(t) · x2 − p34(t) · x3

}
,

where the coefficients of the linear forms satisfy the Grassmann-Plücker relation

(2.2) p12(t) · p34(t) − p13(t) · p24(t) + p14(t) · p23(t) = 0.

We abbreviate aij = order
(
pij(t)

)
. The line T (I) is the set of all points w ∈ TP3 which

satisfy a Boolean combination of linear inequalities:
(

a12 + x2 = a13 + x3 ≤ a14 + x4 or

a12 + x2 = a14 + x4 ≤ a13 + x3 or a13 + x3 = a14 + x4 ≤ a12 + x2

)

and
(

a12 + x1 = a23 + x3 ≤ a24 + x4 or

a12 + x1 = a24 + x4 ≤ a23 + x3 or a23 + x3 = a24 + x4 ≤ a12 + x1

)

and
(

a13 + x1 = a23 + x2 ≤ a34 + x4 or

a13 + x1 = a34 + x4 ≤ a23 + x2 or a23 + x2 = a34 + x4 ≤ a13 + x1

)

and
(

a14 + x1 = a24 + x2 ≤ a34 + x3 or

a14 + x1 = a34 + x3 ≤ a24 + x2 or a24 + x2 = a34 + x3 ≤ a14 + x1

)
.

To resolve this Boolean combination, one distinguishes three cases arising from (2.2):

Case [12, 34] : a14 + a23 = a13 + a24 ≤ a12 + a34,

Case [13, 24] : a14 + a23 = a12 + a34 ≤ a13 + a24,

Case [14, 23] : a13 + a24 = a12 + a34 ≤ a14 + a23.
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In each case, the line T (I) consists of a line segment, with two of the four coordinate rays

emanating from each end point. The two end points of the line segment are

Case [12, 34] : (a23 + a34, a13 + a34, a14 + a23, a13 + a23) and

(a13 + a24, a13 + a14, a12 + a14, a12 + a13) ,

Case [13, 24] : (a24 + a34, a14 + a34, a14 + a24, a12 + a34) and

(a23 + a34, a13 + a34, a12 + a34, a13 + a23) ,

Case [14, 23] : (a23 + a34, a13 + a34, a12 + a34, a13 + a23) and

(a24 + a34, a14 + a34, a14 + a24, a12 + a34) .

1

2

3

4

1 2

3 4

1 2

34

Figure 11. The three types of tropical lines in TP3.

The three types of lines in TP3 are depicted in Figure 11.
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3. Amoebas, tropical geometry and deformations

3.1. Introduction. We consider algebraic varieties from the following viewpoint of

amoebas.
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Figure 12. Amoeba Log V(f) for f(z1, z2) = 1
2
z1 + 1

5
z2 − 1

Definition 3.1. For a polynomial f ∈ C[X1, . . . , Xn] the image set of its variety V(f) ⊂
(C∗)n under the map

Log : (C∗)n → Rn ,

z = (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|)

is called the amoeba of f , denoted Af .

In order to keep the setup simple, we often concentrate on the case of plane curves, i.e.,

f ∈ C[X1, X2].

Example 3.2. (a) The shaded area in Figure 12 shows the amoeba Log V(f) for the

linear function

f(z1, z2) =
1

2
z1 +

1

5
z2 − 1 .

Note that this amoeba is a two-dimensional set. When denoting the coordinates in the

amoeba plane by w1 and w2, the three tentacles have the asympotics w1 = log 2, w2 =

log 5, and w2 = w1 + log(5/2). We remark that the amoeba of a two-dimensional variety

V(f) ∈ (C∗)2 is not always a two-dimensional set. Namely, e.g., for f(z1, z2) := z1 + z2,

we obtain Log V(f) = {(w1, w2) ∈ R2 : w1 = w2}.

(b) If f ∈ C[X±1
1 , . . . , X±1

n ] is a binomial in n variables,

f(z) = zα − zβ

with α 6= β ∈ Zn, then the amoeba Log V(f) is a hyperplane in Rn which passes through

the origin. To see this, first note that for any complex solution z of zα = zβ, the real vector

|z| = (|z1|, . . . , |zn|) is a solution as well. So it suffices to consider vectors z ∈ (0,∞)n. We

can rewrite |z|α = |z|β as |z|α−β = 1, and by using the dot product of vectors we obtain

(α − β) · Log z = 0 .



3. AMOEBAS, TROPICAL GEOMETRY AND DEFORMATIONS 57

Figure 13. Newton polygon of a dense quartic in two variables

Since α 6= β, this equation defines a hyperplane in the coordinates log |z1|, . . . , log |zn|
which passes through the origin.

The following properties are the reason why it is often convenient to look at log |zi| rather

than |zi| itself.

Theorem 3.3. The complement of a hypersurface amoeba Log V(f) consists of finitely

many convex regions, and these regions are in bijective correspondence with the different

Laurent expansions of the rational function 1/f .

The shape of the amoeba is also related to the support

supp(f) = {α ∈ Zn : cα 6= 0}

of the function f and to the Newton polytope

New(f) = conv(supp(f)) .

Example 3.4. Figure 13 shows the Newton polygon of a dense quartic polynomial f in two

variables. Figure 14 depicts a series of amoebas Log V(f) for dense quartic polynomials

f ∈ R[X1, X2]. In the first picture in this series, f is the product of four linear functions

f1, f2, f3, f4. The amoeba of V(f) is the union of the amoebas of V(f1), V(f2), V(f3), and

V(f4). This polynomial f is perturbed by adding or subtracting to every coefficient cα of f

(with the exception of the coefficient corresponding to the constant term) independently

a random value in the interval [0, 1
5
|cα|); see the right picture in the top row. This

perturbation process is then iterated another four times.

3.2. Background from complex analysis. A central theme here is that we are

looking for convexity and linearity within algebraic varieties.
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Figure 14. A series of quartic amoebas in two variables. The first picture

shows the amoeba of V(f1 · f2 · f3 · f4), where f1(z1, z2) =
(

1
30

z1 + 1
30

z2 − 1
)
,

f2(z1, z2) =
(

1
5
z1 + 4z2 − 1

)
, f3(z1, z2) =

(
3z1 + 4

7
z2 − 1

)
, f4(z1, z2) =

(
30z1 + 1

300
z2 − 1

)
.

Suppose f ∈ C[X] is a univariate polynomial with zeroes a1, . . . , ak satisfying |a1| ≤ · · · ≤
|ak|, and assume f(0) 6= 0. Then Jensen’s formula (for entire functions, i.e., holomorphic
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functions with a countable number of solutions) implies

1

2πi

∫

|z|=R

log |f(z)|
z

dz =
1

2π

∫ 2π

0

log |f(Reit)|dt = log |f(0)| +
mR∑

i=1

log
R

|ai|
,

where mR is the largest index with |amR
| < R. Considering this expression as a function

Nf of log R, then obviously Nf is a piecewise linear convex function whose gradient is
∑mR

i=1 1 = mR, i.e., the number of zeroes of f inside the disc {|z| ∈ Cn : |z| < R}.

A main analytic tools in the study of amoebas is the Ronkin function which can be seen

as a certain generalization of Nf to functions in several variables.

Definition 3.5. For a polynomial f ∈ R[X1, . . . , Xn] the Ronkin function Nf : Rn → R

is defined by

Nf(w1, . . . , wn) =
1

(2πi)n

∫

Log−1(w)

log |f(z1, . . . , zn)|
z1 · · · zn

dz1 · · · dzn .

Example 3.6. Let n = 2 and f be the monomial

f(z1, z2) = czs
1z

t
2

with c ∈ R. Then

Nf (w1, w2) =
1

(2πi)2






∫

Log−1(w1,w2)

log |c|
z1z2

+
s log |z1|

z1z2
+

s log |z2|
z1z2




 dz1dz2

= log |c| + sw1 + tw2 ,

since 1
(2πi)2

∫

Log−1(w1,w2)

s log |z1|
z1z2

dz1dz2 = 1
2π

2π∫

t=0

s(log ew1 + log |eit|
︸︷︷︸

1

)dt = sw1 .

Nf retains some properties from the one-dimensional case, while others are lost or attain a

new form. For example, Nf is a convex function, but is not longer piecewise linear. How-

ever, on each component of Rn \Af , Nf behaves like the Ronkin function of a monomial:

it is linear, and its gradient is the corresponding integer point of the Newton polytope

Newf .

Theorem 3.7. i) The Ronkin function Nf is convex.

ii) Nf is affine on each component of Rn \ Af and stricly convex on Af .

iii) The derivative of Nf with respect to zj is the real part of

νj =
1

(2πi)n

∫

Log−1(w)

zj∂jf(z)

f(z)

dz1 · · · dzn

z1 · · · zn

, 1 ≤ j ≤ n .
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For x in a connected component C of Rn \Af , the vector ν = (ν1, . . . , νn) is defined to be

the order of the component C (the invariance of ν in the same complement component

can also be seen from complex analysis arguments). Moreover, two different points x, x′ ∈
cLog V(f) have the same order if and only if they are contained in the same connected

component E of cLog V(f). Moreover, it can be shown that the order ν of any component

of cLog V(f) is contained in the Newton polytope New(f).

The maximum of the affine functions underlying the Ronkin function on the complement

components is a piecewise linear convex function. The set where it is not differentiable is

called the spine.

In order to compute an order, the following description is useful.

Theorem 3.8. If x is in the complement of an amoeba Af , then gradNf (x) is equal to

the order of the complement component containing x

The importance of the spine comes from the following statement.

Theorem 3.9. Let f ∈ C[X1, . . . , Xn]. Then the spine Sf is a polyhedral complex which

is dual to the Newton polytope of f . Sf is a deformation retract of the amoeba, i.e., the

complement Rn \ Sf consists of a finite number of polyhedra, and each of these polyhedra

contains exactly one connected component of the amoeba complement Rn \ Af .

3.3. Maslov dequantization of amoebas. We now consider a deformation of an

amoeba of a polynomial f ∈ R[x1, . . . , xn] to the “natural” tropical hypersurface associ-

ated with f . For simplicity, let n = 2.

We consider the operations

x ⊕t y = logt(t
x + ty) ,

x ⊙ y = x + y

for 0 < t < 1. (R,⊕t,⊙) constitutes a semiring. Indeed, note that for x, y, z ∈ R we have

the distributive law (x ⊕t y) ⊙ z = x ⊙ y ⊕t x ⊙ z.

In the limit case for t ↓ 0, we obtain

x ⊕0 y = min{x, y} .

The following inequality holds for k ∈ N and x1, . . . , xk ∈ R:

min{x1, · · · , xk} + logt k
︸ ︷︷ ︸

<0

≤ x1 ⊕t · · · ⊕t xk ≤ min{x1, . . . , xk} .
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Given a polynomial f ∈ R[x1, . . . , xn], let ft be the polynomial obtained from using the

operations ⊕t, ⊙. Then we consider the polynomial

gt(z) = tft(Logt z)

For any given t, this function is a polynomial!

Lemma 3.10. If a point x ∈ Rn belongs to the amoeba

Logt({z ∈ (C∗)n : gt(z) = 0})

then for each multiindex α we have

cα ⊙ xα ≥
⊕

β 6=α

cβ ⊙ xβ .

(Here, the index t in
⊕

is omitted for notational convenience.)

Proof. If x = Logt z with gt(z) = 0 then for each α

tcαzα =
∑

β 6=α

tcβzβ .

Passing over to the absolute value and applying the triangle inequality yields

tcα |z|α ≤
∑

β 6=α

tcβ |z|β .

Now applying logt (for 0 < t < 1) on both sides gives

cα ⊙ xα ≥
⊕

β 6=α

cβ ⊙ xβ .

�

The Hausdorff distance between two closed subsets A, B ⊂ Rn is defined by

max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)} ,

where d(a, B) is the Euclidean from a to B. Let At = Logt(Vt) and Atrop be the tropical

hypersurface of the tropical polynomial with the coefficients of f .

Theorem 3.11. For t ↓ 0, the sequence of At converges in the Hausdorff metric to the

tropical hypersurface Atrop.



62 3. TROPICAL GEOMETRY

Notes. All these results refer to the case where X is an algebraic hypersurface. A

main difficulty in the treatment of amoebas of arbitrary varieties comes from the following

simple observation. If X, Y , and Z are subvarieties of (C∗)n with X ∩ Y = Z, then

Log Z ⊂ Log X ∩ Log Y , but in general the inclusion is proper.
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