
POSITIVE POLYNOMIALS AND SUMS OF SQUARES:
A BEGINNER’S GUIDE

Victoria Powers

1 Introduction

These notes are based on a series of lectures given by the author as part of the CIMPA
school on Combinatorial and Computational Algebraic Geometry at the University of
Ibadan, Nigeria, June 12-23, 2017. The material covered during the lectures has been
extended with many more details and more background added.

If polynomial f with real number coefficients can be written as a sum of squares of real
polynomials, then f takes only nonnegative values on Rn, and an explicit expression of
f as a sum of squares gives an immediate proof of this. This idea, and generalizations
of it, underlie a large body of theoretical and computational results concerning positive
polynomials and sums of squares. In these notes we will present some of these ideas
and the history of the subject, much of which originated in work of David Hilbert in the
late 19th century. These notes are written for “beginners”, by which we mean someone
with no background in sums of squares and real algebraic geometry. We assume that
the reader knows linear algebra at the undergraduate level along with basic ideas in
abstract algebra including fields and polynomials.

2 Preliminaries

In this section we collect some basic facts about the real numbers and polynomials that
will be important in what follows.

2.1 The real numbers

Throughout, we work in R, the field of real numbers; Z denotes the integers, Z≥0 the
nonnegative integers, N the natural numbers (positive integers), Q the rational numbers,
and C the complex numbers. The most important property of R is that it has an order:
The statement a > b makes sense for a, b ∈ R. In classic algebraic geometry one studies
algebraic sets over C, solution sets to systems of polynomial equations. Algebraic sets
defined over R are studied in real algebraic geometry, but in addition, since R has an
order, we can define semialgebraic sets, solution sets to polynomial inequalities.

We list some properties of R that will be important and useful in these notes.

Basic Properties of R. 1. For any a ∈ R, if a2 = 0, then a = 0.

2. For any a ∈ R, a2 ≥ 0.

3. For any k ∈ N and a1, . . . , ak ∈ R, if
∑k
i=1 a

2
i = 0, then a1 = a2 = · · · = ak = 0.
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Note that the first property holds in any field and the third property follows from the
first two.

Finally, we recall the following property of real numbers:

The Arithmetic-Geometric Mean. Suppose k ≥ 2 is an integer and a1, . . . , ak ∈ R
are nonnegative. Then

a1 + · · ·+ ak
k

≥ k
√
a1a2 . . . ak.

2.2 Polynomials

We will be working mainly with polynomials with coefficients from R. Throughout
these notes we fix n ∈ N and let R[X]; = R[X1, . . . , Xn] be the ring of polynomials in
n variables over R. Generally we will use capital letters for variables and x, y, etc. for
elements of Rn. For convenience, R[T ] will be used in the n = 1 (one variable) case,
R[X,Y ] will be used in the n = 2 case, and R[X,Y, Z] in the n = 3 case.

We use the following monomial notation: For α = (α1, . . . , αn) ∈ (Z≥0)n, let Xα denote
Xα1

1 · · ·Xαn
n . The degree of Xα is |α| = α1+α2+ · · ·+αn and the degree of f ∈ R[X] is

the maximum degree of the monomials in f with nonzero coefficients. Thus if deg f = d,
we have

f =
∑
|α|≤d

aαX
α,

where aα ∈ R and aα 6= 0 for some α with |α| = d. The support of f , supp(f), is
{α | aα 6= 0}.

Proposition 1. Suppose f ∈ R[X] and f(x) = 0 for all x ∈ Rn. Then f is the zero
polynomial, i.e., supp(f) = ∅.

Proof. Assume f is not the zero polynomial, then we prove by induction on n that there
is x ∈ Rn such that f(x) 6= 0. For n = 1, this follows from the well-known fact that a
non-zero polynomial in one variable has finitely many roots. Now suppose n > 1 and
let d ∈ N be the maximum power of Xn that appears in f . Then we can write

f = g0 + g1Xn + g2X
2
n + · · ·+ gdX

d
n,

where g0, . . . , gd ∈ R[X1, . . . , Xn−1]. Since f is not the zero polynomial, there is
some i such that gi is not the zero polynomial. Then, by induction, there exists
x = (x1, . . . , xn−1) ∈ Rn−1 such that gi(x) 6= 0. It follows that

f(x1, . . . , xn−1, Xn) = g0(x) + g1(x)Xn + · · ·+ gd(x)Xd
n,

is a polynomial in one variable that is not the zero polynomial. Hence there is xn ∈ Rn
such that f(x1, . . . , xn) 6= 0.

2.3 Polynomials versus Forms

A form is a homogeneous polynomial, i.e., one for which all monomials have the same
degree. For example, X4 + 2X3Y + X2Y 2 is a form while X4 + Y 2 + 1 is not. Given
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f ∈ R[X] of degree d, then the degree d homogenization of f , denoted f̄ , is a form
in R[X1, . . . , Xn, Xn+1] of degree d, defined by

f̄ := Xd
n+1 · f

(
X1

Xn+1
, . . . ,

Xn

Xn+1

)
.

If p ∈ R[X1, . . . , Xn+1] is a form of degree d, then the dehomogenization of p is the
polynomial p(X1, . . . , Xn, 1), which is a polynomial in R[X] of degree d. It is easy to
see that for all f ∈ R[X], the dehomogenization of f̄ is f .

Given f ∈ R[X] of degree d, we can collect the monomials of a given degree in f and
write

f = fd + fd−1 + · · ·+ f0, (1)

where fi is a form in R[X] of degree i. The leading form of f is fd.

Example 1. Let m = X4Y 2 +X2Y 4 − 3X2Y 2 + 1 ∈ R[X,Y ], the Motzkin polynomial.
We will encounter this famous polynomial again in the next section. The degree of m
is 6 and the decomposition of m into forms as in (1) is m = m6 + m4 + m0, where
m6 = X4Y 2 +X2Y 4, m4 = −3X2Y 2, and m0 = 1. The degree 6 homogenization of m
is m̄ = X4Y 2 +X2Y 4 − 3X2Y 2Z2 + Z6, a form in R[X,Y, Z].

Many of the ideas and results we discuss in this article originated with the work of David
Hilbert in the late 19th century. He worked with forms, however we prefer to work with
polynomials; it turns out that for the purposes of results on sums of squares and positive
polynomials, it does not matter which setting is used, as we shall see.

3 SOS and PSD polynomials

A polynomial f ∈ R[X] is a sum of squares, sos for short, if there exist g1, . . . , gk ∈
R[X] such that

f = g21 + · · ·+ g2k (2)

An sos representation for f is an equation of this type. A polynomial can have more
than one sos representation, for example,

X4 + Y 4 + 1 = (X2)2 + (Y 2)2 + 12 = (X2 − Y 2)2 + (
√

2XY )2 + (1)2.

For a commutative ring A, we denote the set of sums of squares of elements in A by∑
A2. In particular,

∑
R[X]2 denotes the set of sos polynomials in R[X].

A polynomial f ∈ R[X] is positive semidefinite, psd for short, if f(x) ≥ 0 for all
x ∈ Rn.

We list some useful properties of psd and sos polynomials.

Proposition 2. Given f ∈ R[X].

1. If f is psd, then the degree of f must be even.

2. If f ∈ R[T ] is a psd polynomial in one variable, then the leading coefficient of f is
positive and all real roots of f appear with even multiplicity.
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3. If f is sos and f = g21 + · · ·+ g2k, then deg f = 2 max{deg g1, . . . ,deg gk}.

Proof. 1. This is clear if f is a polynomial in one variable since a polynomial of odd
degree has at least one root with odd multiplicity and hence changes sign at this root.
Suppose f ∈ R[X] is psd and has degree d, then we can decompose f into forms as in
(1), say f = fd + · · ·+ f0. Suppose d is odd. Fix x = (x1, . . . , xn) ∈ Rn and consider

g(T ) := f(x1T, x2T, . . . , xnT ) =

d∑
i=0

fi(x)T i,

a polynomial in R[T ]. Since f is psd, for any t ∈ R, g(t) = f(t · x) ≥ 0, hence g is psd.
Since g(T ) is a polynomial in one variable, it follows that g(T ) must have even degree,.
Since d is odd, this implies that fd(x) = 0. But this must hold for any x ∈ Rn, i.e.,
fd(x) = 0 for all x ∈ Rn. By Proposition 1, it follows that fd is the zero polynomial,
which contradicts deg f = d. Thus the degree of f must be even.

2. Suppose f(T ) ∈ R[T ] is psd. The degree of f is even hence if the leading coefficient
were negative we would have lim

T→∞
f(T ) = −∞, which contradictions f psd. Since f

cannot change sign at a root, all roots must appear with even multiplicity.

3. For each i, let ri = deg gi and set d = max{ri}. Then for each i, deg gi ≤ d which
implies that deg g2i ≤ 2d. Hence deg f ≤ 2d. Now let f2d denote the homogeneous term
of degree 2d in f , we need to show that f2d 6= 0. For each i, let gi,d denote the sum
of the terms in gi of degree d, so that gi,d = 0 if ri < d and gi,d is the leading form of
gi if ri = d. By assumption, there is at least one i such that gi,d 6= 0. The only way a
term of degree 2d can appear in g2i is from g2i,d, hence f2d =

∑
i g

2
i,d. If f2d = 0, then

we would have
∑
i gi,d(x)2 = 0 for all x ∈ Rn. By one of the basic properties of R, this

would imply that gi,d(x) = 0 for all x and all i, which implies gi,d is the zero polynomial
for all i. But this contradicts gi,d 6= 0 for at least one i. Hence f2d 6= 0 which implies
deg f = 2d.

Given g ∈ R[X] and x ∈ Rn, then g2(x) = (g(x))2 ≥ 0 and hence a sum of squares
g21 + · · ·+ g2k take only nonnegative values. In other words

If f ∈ R[X] is sos, then f is psd.

Question: f sos implies that f is psd. Does f psd imply f is sos?

In general, the answer to this question is “no”, however in some special cases the answer
is “yes”. Two such cases – polynomials in one variable and polynomials of degree 2 –
were well-known by the late 19th century.

For n, d ∈ N, let PSD(n, d) denote the set of psd polynomials in R[X] of degree d and
let SOS(n, d) denote the set of sos polynomials in R[X] of degree d. By Proposition 2,
if d is odd then PSD(n, d) = SOS(n, d) = ∅, thus we do not consider this case further.
We have seen that for all n and d, SOS(n, 2d) ⊆ PSD(n, 2d).

Theorem 1. If f ∈ R[T ] is a psd polynomial in one variable, then f can be written as
a sum of two squares of polynomials in R[T ].

Proof. By the Fundamental Theorem of Algebra, f factors into linear factors over C.
Since f has real coefficients, any roots in C \ R must appear in conjugate pairs. By
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Proposition 2 the leading coefficient of f is positive, hence equals c2 for some nonzero
c ∈ R. Suppose the real roots of f are a1, . . . , as with multiplicities 2u1, . . . , 2us and the
non-real roots of f are the conjugate pairs {b1 ± ic1, . . . , bt ± ict}. Then we have

f = c2 ·
s∏
j=1

(T − aj)2uj ·
t∏

k=1

(T − (bk + i ck))(T − (bk − i ck)).

Let p(T ) = c ·
∏s
j=1(T − aj)

uj . Expanding the second product, we can write it as
(q(T ) + i r(T ))(q(T )− i r(T )), where q(T ), r(T ) ∈ R[T ]. Then we have

f = (p(T ))2 · (q(T ) + i r(T ))(q(T )− i r(T )) = (p(T )q(T ))2 + (p(T )r(T ))2.

Example 2. Let f = T 4 − T 2 + 2T + 2, which is psd. The roots of f are −1 and the
conjugate pair 1± i and the factorization of f is

f = (T + 1)2(T − (1 + i))(T − (1− i)).

In the notation of the proof of the theorem we have p(T ) = T + 1, q(T ) = T − 1, and
r(T ) = 1. This yields f = (T 2 − 1)2 + (T + 1)2.

Theorem 2. If f ∈ R[X] is psd and deg f = 2, then f is a sum of squares of linear
polynomials.

Proof. It is enough to show that f̄ , the homogenization of f is sos. Since f is psd, f̄ is
a psd quadratic form. The result follows from the well-known fact that a psd quadratic
form can be diagonalized into a sum of squares of linear forms.

The previous two results show that SOS(1, 2d) = PSD(1, 2d) for all d and SOS(n, 2) =
PSD(n, 2) for all n; these results were well-known by the late 19th century. In 1888, the
26-year old David Hilbert proved two remarkable theorems in one paper [4], settling the
question of whether SOS(n, 2d) = PSD(n, 2d) in all remaining cases.

Remark 1. As mentioned above, Hilbert worked with forms. Since the process of
dehomogenization preserves the properties sos and psd, Hilbert’s results are valid in the
polynomial setting and we state his results in terms of polynomials.

Theorem 3 (Hilbert). 1. SOS(2, 4) = PSD(2, 4). In particular, if f is a polynomial
of degree 4 in two variables and f is psd, then f is a sum of three squares of
quadratic polynomials.

2. In all other cases, i.e., if n ≥ 2 and d ≥ 3 or if n ≥ 3 and d ≥ 2, there exists
f ∈ PSD(n, 2d) such that f 6∈ SOS(n, 2d).

Hilbert’s proofs were not constructive, in particular, he did not give an explicit example
of a psd polynomial that is not sos. The first published example appeared in 1967, due
to Motzkin [5]. The Motzkin polynomial is in PSD(2, 6) \ SOS(2, 6). Recall

m(X,Y ) = X4Y 2 +X2Y 4 − 3X2Y 2 + 1.

Proposition 3. The Motzkin polynomial m(X,Y ) is psd.
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Proof. Given (x, y) ∈ R2, let a = x4y2, b = x2y4, and c = 1. By the Arithmetic-
Geometric Mean with k = 3, we have 1

3 (x4y2 + x2y4 + 1) ≥ x2y2, hence x4y2 + x2y4 −
3x2y2 + 1 ≥ 0, which implies m(x, y) ≥ 0. Thus m is psd.

Proposition 4. m(X,Y ) is not sos.

Proof. Assume m is sos, then by Proposition 2, since degm = 6, we have m =
∑
g2i

where deg gi ≤ 3 for all i. Thus we have

m =
∑
i

(aiX
3 + biX

2Y + ciXY
2 +diY

3 + eiX
2 +fiXY +giY

2 +hiX+ jiY +ki)
2, (3)

where ai, bi, . . . , ki ∈ R. The coefficients on each side of (3) must agree. Consider the
coefficient of X6, which is 0. On the right-hand side, the only way to get an X6 term is
from (aiX

3)2, hence we have 0 =
∑
i a

2
i . This implies that ai = 0 for all i, i.e., there are

no X3 terms in the gi’s. A similar argument shows that there are no Y 3 terms in the
gi’s. Now look at the coefficient of X4, which must be 0 on both sides of the equation.
On the right-hand side, the coefficient of X4 is

∑
i(e

2
i + aihi). Since ai = 0, we have

0 =
∑
e2i , which implies ei = 0 for all i. A similar argument, using the coefficient of Y 4,

shows that gi = 0 for all i. Finally, consider the coefficient of X2Y 2. Looking at the
coefficients of X2 and Y 2, a similar argument shows that hi = ji = 0 for all i. Thus we
have

m =
∑
i

(biX
2Y + ciXY

2 + fiXY + ki)
2.

Looking at the coefficient of X2Y 2 on both sides of the equation we have −3 =
∑
i f

2
i ,

a contraction. Thus no such sos representation can exist for m.

3.1 Hilbert’s 17th Problem

In 1900, in Hilbert’s address at the International Congress of Mathematicians in Paris,
he posed a generalization of his results as the 17th Problem: Must every psd form p
be a sum of squares of quotients of forms? Dehomogenizing, this question becomes the
following: Given f ∈ R[X] such that f is psd, do there exist g1, . . . , gk, h1, . . . hk ∈ R[X]
such that

f =
g21
h21

+ · · ·+ g2k
h2k

?

Clearing denominators, we get an equivalent formulation: Do there exist g1, . . . , gk, h ∈
R[X] such that

h2f = g21 + · · ·+ g2k? (4)

In 1927, Emil Artin [1] used the Artin-Schreier theory of real closed fields to answer
HIlbert’s 17th problem:

Theorem 4 (Artin). If f ∈ R[X] is psd, then there exists h ∈ R[X] such that h2f is
sos.
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Example 3. Here is a representation of the Motzkin polynomial as a sum of squares of
rational functions:

X4Y 2 +X2Y 4 − 3X2Y 2 + 1 =
X2Y 2(X2 + Y 2 + 1)(X2 + Y 2 − 2)2 + (X2 − Y 2)2

(X2 + Y 2)2

Suppose we have an equation of the form (4) for f , then since h2 and g21 + · · · + g2k
are psd, we can see immediately that f is psd. In other words, we have a certificate
of non-negativity for f , an immediate proof that f is psd. Artin’s Theorem says
that such certificates always exist as long as don’t insist that the certificate be in the
polynomial ring R[X]; we must allow denominators. In general we will use the word
certificate (of positivity/nonnegativity on a set in Rn) to denote an equation which yields
an immediate proof of the condition.

Question: What can we say if we replace the condition f(x) ≥ 0 for all x ∈ Rn by a
positivity condition f(x) ≥ 0 for all x ∈ S, where S is a semialgebraic set in Rn?

We will discuss this question in the next section.

4 Representation Theorems

Writing a psd polynomial f as a sum of squares of polynomials or rational functions is a
certificate of nonnegativity for f , a proof that f is psd. In this section we generalize this
idea to polynomials that take only nonnegative (or only positive) values on semialgebraic
sets in Rn. For a subset S ⊆ Rn and f ∈ R[X], we write f ≥ 0 on S (f > 0 on S)
to denote that f(x) ≥ 0 (f(x) > 0) for all x ∈ S. A theorem about the existence of
certificates for f ≥ 0 or f > 0 on a semialgebraic set S is often called a representation
theorem and an equation which provides a certificate for f a representation of f .

Definition 1. For g1, . . . gk ∈ R[X], the basic closed semialgebraic set generated by
g1, . . . , gk, denoted S(g1, . . . , gk), is {x ∈ Rn | gi(x) ≥ 0 for i = 1, . . . k}. In other words,
S(g1, . . . , gk) is the solution set in R to the finite set of inequalities {g1 ≥ 0, . . . , gk ≥ 0}.

We define an algebraic object in R[X] associated to S(g1, . . . , gk): The preorder gener-
ated by g1, . . . , gk, denoted P (g1, . . . , gk), is the set of f ∈ R[X] which can be written as
a linear combination over

∑
R[X]2 of products of the gi’s. In other words, P (g1, . . . , gk)

consists of all elements in R[X] of the form∑
ε=(ε1,...,εk)∈{0,1}k

σε g
ε1
1 . . . gεkk , (5)

where σε ∈
∑

R[X]2 for all ε. Notice that for g ∈ R[X] and anym ∈ N, g2m+1 = (gm)2·g,
which is of the form σ ·g with σ ∈

∑
R[X]2. Thus in order to obtain all possible products

of the gi’s we need only use exponents 0 or 1. For example, for g, h ∈ R[X],

P (g) = {σ0 + σ1g | σ0, σ1 ∈
∑

R[X]2},

P (g, h) = {σ0 + σ1g + σ2h+ σ3gh | σ0, σ1, σ2, σ3 ∈
∑

R[X]2}.
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An explicit expression for f ∈ R[X] of the form (5) is called a representation of f in
P (g1, . . . , gk). For example, in R[T ],

1− T =
1

2
(1− T )2 +

1

2
(1− T 2)

is a representation of 1− T in P (1− T 2).

Fix g1, . . . , gk ∈ R[X] and set S := S(g1, . . . , gk) and P := P (g1, . . . , gk). For any x ∈ S
and σ ∈

∑
R[X]2, σ(x) ≥ 0 since σ is psd and gi(x) ≥ 0 by definition of S. This implies

that for any f ∈ P , f ≥ 0 on S. Furthermore, a representation of f in P is a certificate
for f ≥ 0 on S.

Question: Suppose f ≥ 0 on S(g1, . . . , gk), does this imply that f ∈ P (g1, . . . , gk)?

The answer to this question is “no” since it includes the question of whether a psd
polynomial is sos. As in the psd/sos case, there are some special cases where the answer
is “yes” and we will see that we can obtain a general result if we relax the requirement
that the certificates are in the polynomial ring R[X]. Recall that Artin’s Theorem says
that if f is psd then h2f is sos for some polynomial h. We refer to the h2 term as a
denominator and more generally we will talk about representations with denominators
when we obtain a representation of f in the preorder (or some other certificate in R[X])
after multiplying by a polynomial that is obviously nonnegative on the semialgebraic
set.

In 1974, Stengle [9] proved his celebrated Positivstellensatz, which showed that for any
basic closed semialgebraic set S there always exist certificates for f > 0 and f ≥ 0 on
S, provided we allow denominators. In some sense, this theorem marks the beginning
of modern real algebraic geoemtry. There are several versions of this famous theorem,
here is one.

Positivstellensatz. With S and P as above, we have

1. S 6= 0 if and only if −1 ∈ P .

2. If f ≥ 0 on S, then there exist p, q ∈ P and an integer m ≥ 1 such that pf =
f2m + q.

3. If f > 0 on S, then there exist p, q ∈ P such that pf = 1 + q.

Suppose x ∈ S and we have pf = f2m + q for p, q ∈ P . Then p(x), q(x), and f2m(x) are
all nonnegative, hence f(x) must be nonnegative. Similarly, if we have pf = 1 + q, then
plugging x into both sides of this equation implies f(x) > 0. Thus the Positivstellensatz
implies the existence of certificates for f ≥ 0 and f > 0 for all basic closed semialgebraic
sets S if we allow representations with denominators.

If the generators g1, . . . , gk are linear, then we can obtain representation theorems with-
out denominators in some cases. In 1928, Pólya’s [6] proved a representation theorem
for forms positive on the standard simplex.

Let ∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i and
∑n
i=1 xi = 1}, the standard n-simplex.

Notice that ∆n is a basic closed semialgebraic set:

∆n = S(X1, . . . , Xn, 1−
∑

Xi).
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Theorem 5 (Pólya). Suppose f ∈ R[X] such that f > 0 on ∆n. Then there exists
N ∈ N such that (X1 + · · ·+Xn)Nf has only positive coefficients.

Suppose f > 0 on ∆n and deg f = d. Let N be as in the theorem, then we have

(X1 + · · ·+Xn)f =
∑

|α|≤d+N

aαX
α, (6)

where aα > 0 for all α. Let x ∈ ∆n, then plugging x into both sides of equation (6) we
see immediately that f(x) > 0. Hence (6) is a certificate for f > 0 on ∆n.

Handelman’s Theorem from 1988 [3] applies to polynomials positive on any compact
polyhedron. Fix g1 . . . , gk ∈ R[X]. We use the following notation for products of the

gi’s: For β = (β1, . . . , βk) ∈ Zk≥0, let gβ denote gβ1

1 . . . gβk

k .

Theorem 6 (Handelman). Suppose g1, . . . , gk ∈ R[X] are linear and the polyhedron
S = S(g1, . . . , gk) is nonempty and bounded. Given f ∈ R[X], if f > 0 on S, then f
can be written as a positive linear combination of products of the gi’s. In other words,
there exist β(1), . . . , β(r) ∈ Zk≥0 and a1, . . . , ar ∈ R+ such that

f =

r∑
i=1

aig
β(i).

In 1991, Schmüdgen [8] proved a beautiful and unexpected theorem that gives a denominator-
free version of the Positivstellensatz in the case where the basic closed semialgebraic set
is compact.

Schmüdgen’s Theorem. Given g1, . . . , gk ∈ R[X], let S = S(g1, . . . , gk) and P =
P (g1, . . . , gk). Suppose S is compact, then for all f such that f > 0 on S, f ∈ P .

Note that the theorem is not true in general if we drop the assumption that S is compact
or if we relax f > 0 on S to f ≥ 0 on S.

One remarkable aspect of Schmüdgen’s Theorem is that it does not depend on the choice
of generators g1, . . . , gk for S. Consider a very simple case when n = 1: S = [−1, 1]. Then
S = S(1− T 2) and the theorem says that for any f ∈ R[T ] such that f > 0 on [−1, 1],
there exist σ0, σ1 ∈

∑
R[T ]2 such that f = σ0 + σ1(1− T )2. This seems reasonable, in

fact, given such f it is not too difficult to obtain an explicit representation of this type.
But we also have [−1, 1] = S((1 − T )2017) and the theorem says that for any f > 0 on
[−1, 1] there exist σ0, σ1 ∈

∑
R[T ]2 such that f = σ0+σ1(1−T 2)2017. This is surprising,

and for specific f it is not clear how we could find a representation of this type.

Schmüdgen’s Theorem is very general, but as we increase the number of generators,
the number of possible terms in a representation in the preorder increases exponentially
since there are 2k different products of k generators. In 1993, M. Putinar proved a
representation theorem that gives simpler representations and applies if we have an
additional condition on our set of generators.

The quadratic module generated by g1, . . . , gk ∈ R[X], denoted QM(g1, . . . , gk), is
the set of linear combinations of the gi’s over

∑
R[X]2, in other words, all elements in

R[X] of the form
σ0 + σ1g1 + · · ·+ σkgk,

9



where σ0, . . . , σk ∈
∑

R[X]2. Notice that the preorder P (g1, . . . , gk) is a quadratic
module, in fact, the quadratic module generated by all products gε11 . . . gεkk , where εi ∈
{0, 1} for all i.

A quadratic module Q = QM(g1, . . . , gk) ⊆ R[X] is Archimedean if for every h ∈ R[X]
there exists N ∈ N such that N ± h ∈ Q.

Theorem 7. The following are equivalent for a quadratic module QQM(g1, . . . gk).

1. Q is Archimedean.

2. There exists N ∈ N such that N −
∑
X2
i ∈ Q.

3. There exists h ∈ Q such that S(h) is compact.

It is important to note that the Archimedean property can depend on the choice of
generators g1, . . . , gk.

Putinar’s Theorem. Given g1, . . . , gk ∈ R[X], let S = S(g1, . . . , gk) andQ = QM(g1, . . . , gk).
Suppose Q is Archimedean. For f ∈ R[X], if f > 0 on S, then f ∈ Q.

Remark 2. Given S = S(g1, . . . , gk), then S compact does not in general imply the
Q(g1, . . . , gk) is Archimedean. On the other hand, if we know or can compute some
N ∈ N such that S is contained in the ball {(x1, . . . , xn) ∈ Rn | N −

∑
x2i }, then it

follows that N −
∑
X2
i ≥ 0 on S. We can add N −

∑
X2
i to the set of generators

for S without changing S and we have immediately that Q(g1, . . . , gk, N −
∑
X2
i ) is

Archimedean. Thus by adding just one extra generator we are in a situation where
Putinar’s Theorem applies.

5 The Gram matrix method

The Gram matrix method, developed by Choi, Lam, and Reznick [2], is a method for
finding and counting sos representations of a polynomial. We first recall some linear
algebra that will be needed. In this section we will view x ∈ Rn as a row vector, i.e., a
1× n matrix.

Definition 2. Let A be a k × k matrix over R.

1. A is positive semidefinite, or psd, if for all x ∈ Rk,

x ·A · xT ≥ 0.

2. For 1 ≤ j ≤ k, the j × j leading principal minor of A is the determinant of the
j × j submatrix of A in the upper left corner of A.

3. A is orthogonal if A · AT = AT · A = I, where I is the k × k identity matrix.
This means that all rows and columns are unit vectors and if x, y ∈ Rk are two
different rows or two different columns of A, then x · yT = 0.

Lemma 1. For any matrix B over R, B ·BT is psd.

10



Proof. Suppose B = (bij) is a k×m matrix. Then B ·BT is a k× k matrix and for any
x = (x1, . . . , xk) ∈ Rk,

x ·B ·BT · xT =

m∑
i=1

(

k∑
j=1

xjbji)
2 ≥ 0.

Theorem 8. The following are equivalent for a k × k matrix A over R.

1. A is psd.

2. All eigenvalues of A are nonnegative.

3. All leading principal minors of A are nonnegative.

As we have seen, a polynomial f can have more than one sos representation. We would
like to count the number of sos representations for a given f , but we first need to
determine what it means for two sos representations to be (essentially) different. For
example, given f, g ∈ R[X], it seems reasonable to consider the two representations

f2 + g2 =
1

2
(f + g)2 +

1

2
(f − g)2,

as essentially the same representation. More generally, if A = (aij) is a real k × k
orthogonal matrix and g1, . . . , gk ∈ R[X], then

g21 + · · ·+ g2k =

k∑
i=1

(

k∑
j=1

aijgj)
2. (7)

We say that the two sos representations in (7) are orthogonally equivalent and we
count sos representations up to orthogonal equivalence.

Given f ∈ R[X] of degree 2d, write f =
∑
|α|≤2d aαX

α. Suppose f is sos, say

f = g21 + · · ·+ g2k. (8)

We want to write (8) in matrix form. Since deg f = 2d, by Proposition 2 each gi has

degree at most d. Assume gi =
∑
|β|≤d b

(i)
β Xβ .

For each β ∈ Nn with |β| ≤ d, set Uβ = (b
(1)
β , . . . , b

(t)
β ), the vector of coefficients of Xβ

in the gi’s. Then (8) becomes

f =
∑
β,β′

Uβ · Uβ′Xβ+β′
. (9)

For each α with |α| ≤ 2d, the coefficients of Xα on both sides of (9) must agree, hence,
for each such α,

aα =
∑

β+β′=α

Uβ · Uβ′ . (10)

11



The matrix V := [Uβ · Uβ′ ], where the rows and columns are indexed by β ∈ Nn with
|β| = d, is the Gram matrix of p associated to (8). Let V = (vβ,β′). Then V is clearly
symmetric and is psd by Lemma 1. Furthermore, the entries satisfy the equations

aα =
∑

β+β′=α

vβ,β′ . (11)

Here is another way to construct the Gram matrix associated to (8). Let N =
(
n+d
d

)
,

the number of monomials in R[X] with degree at most d, and let {β1, . . . , βN} be these
monomials. Let M = (Xβ1 , . . . , XβN ) and let B be the N × k matrix with i, j entry the
coefficient of Xβi in gj . In other words, the j-th column of B consists of the coefficients
of gj , in the order given by M . Then (8) becomes

f = M ·B ·BT ·MT ,

and B ·BT is the Gram matrix of f associated to (8).

Example. In R[T ], let f(T ) = T 4 + 5T 2 + 4 = (T 2 + 2)2 + T 2. Here d = 1, k = 2,
N = 3, and we set M = (T 2, T, 1). With g1 = T 2 + 2 and g2 = T , we have

B =

1 0
0 1
2 0

 ,
so that

B ·BT =

1 0 2
0 1 0
2 0 4


is the Gram matrix associated to the given sos representation.

The following theorem is due to Choi, Lam, and Reznick [2].

Theorem 9. Suppose f ∈ R[X] has degree 2d, say f =
∑
|α|≤2d aαX

α. Let N =
(
n+d
d

)
and let M = (Xβ1 , . . . XβN ) be the vector of monomials of degree d or less. Suppose
V = (vij) is a symmetric N ×N matrix over R.

1. f is a sum of squares and V is the Gram matrix associated to f with respect to
some sos representation if and only if V is psd and for all α ∈ Z≥0 such that
|α| ≤ 2d, the entries of V satisfy the equation∑

βi+βj=α

vij = aα (12)

2. If V is the Gram matrix of f associated to f =
∑k
i=1 g

2
i , then rank(V ) = k.

3. Two sos representations of f are orthogonally equivalent if and only if they have
the same Gram matrix.

How can we use the theorem to decide if f ∈ R[X] is sos or not and count the number of
different sos representations? According the the theorem, this amounts to finding and
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counting real, symmetric, psd matrices whose entries satisfy the equations (12). Here is
one method for finding and counting such matrices.

Given f ∈ R[X] with deg f = 2d, let V = (vij) be an N × N symmetric matrix with

variable entries, where N =
(
n+d
d

)
. Since V is symmetric, there are N(N+1)/2 variables

in V . The equations (12) define a linear system in these N(N+1)/2 variables with
(
n+2d
2d

)
equations. This linear system is underdetermined in general and is trivial to solve since
each variable vij appears in only one equation! In general, the solution will be in terms
of a number of parameters.

Once we have solved the linear system coming from (12), we obtain the general form of
Gram matrix for f , the general Gram matrix for f . This matrix is symmetric with
entries linear in the parameters. Theorem 9 says that f is sos if and only if we can
find values for the parameters which make the matrix V psd. We can use one of the
equivalent conditions for a matrix to be psd from Theorem 1.

Example 4. Consider again f(T ) = T 4 + 5T 2 + 4 and suppose we want to find all
possible sos representations. The general Gram matrix is 3× 3, suppose it is V = (vi,j)
with vj,i = vi,j . There are 5 monomials of degree 4 or less and there are 6 variables in
V . The linear system coming from (12) in this case is

v1,1 = 1

2v1,2 = 0

2v1,3 + v2,2 = 5

2v2,3 = 0

v3,3 = 4

The solution contains one parameter, let’s call it r, and the general form of a Gram
matrix for f is

V (r) :=

1 0 r
0 5− 2r 0
r 0 4

 .
We need to determine for which values of r this matrix is psd. One way to do this is to
find the eigenvalues of this matrix (by hand or using computer algebra software); they
are 5− 2r and 1/2(5±

√
4r2 + 9). These are all nonnegative if and only if −2 ≤ r ≤ 2.

It follows that hence f has infinitely many Gram matrices and therefore infinitely many
different sos representations.

It is easy to check that the rank of V (±2) is 2 and for −2 < r < 2 the rank of V (r) is
3. In fact, all sos representations of f are given by

f = (T 2 + r)2 + (
√

5− 2r T )2 + (
√

4− r2)2,−2 ≤ r ≤ 2.

The alert reader will wonder how we went from the Gram matrix to the sos representa-
tion. Here is one way to do it, which can be done “by hand” for small examples: Suppose
V = (vi,j) is an N ×N Gram matrix for f , then associated to V is a psd quadratic form
defined by

q(X1, . . . , XN ) =
∑
i,j

vi,jXiXj .
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Because q is psd, it can be written as a sum of squares of linear forms. Once we obtain
this sos representation of q, which can be done by completing the square, if we plug in
Xβi for Xi we will obtain the sos representation for f corresponding to V .

In Example 4, the quadratic form corresponding to V (r) is

X4
1 + 2rX1X3 + (5− 2r)X2

2 + 4X2
3 = (X1 + r)2 + (

√
5− 2r)X2)2 + (

√
5− 2r X3)2.

If f ∈ SOS(n, 2d) then, in general, the size of the Gram matrix will be N ×N , where
N =

(
n+d
d

)
. This number N grows very fast as n and d increase. However, in some

cases the size of the general Gram matrix can be reduced since if we know that a certain
monomial Xβ of degree d cannot appear in the gi’s whenever f =

∑
g2i , then we can

omit this monomial from the vector M . This was the case for the Motzkin polynomial.

Example 5. Let m = X4Y 2 + X2Y 4 − 3X2Y 2 + 1. We will find the general Gram
matrix of m and use this to show that m is not sos. In our proof that m is not sos,
we showed that if m =

∑
i g

2
i , then the only monomials that can occur in the gi’s are

X2Y,XY 2, XY , and 1. Thus the general Gram matrix of m is 4 × 4 and it is not to
hard to show that (with the given order of the monomials) it is

1 0 0 0
0 1 0 0
0 0 −3 0
0 0 0 1


This matrix is not psd, hence m is not sos.

We want to give a general result about the monomials that can occur in the gi’s if
f =

∑
g2i . The criterion involves the Newton polytope of f .

Definition 3. The Newton polytope of f ∈ R[X], denoted NP(f), is the convex hull
of supp(f) in Rn, i.e., the smallest convex set in Rn that contains supp(f).

Example 6. Consider the Motzkin polynomial m = X4Y 2 +X2Y 4 − 3X2Y 2 + 1, then
supp(M) = {(2, 2), (2, 0), (0, 2), (0, 0)} and NP(f) is the triangle with vertices (4, 2),
(2, 4), and (0, 0):

X

Y

(0,0)

(4,2)

(2,4)

(2,2)

The following useful theorem can be found in [7].
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Theorem 10. Suppose f = g21 + · · ·+ g2k is sos. Then 2 NP(gi) ⊆ NP(f) for all i.

Let m be the Motzkin polynomial, then we saw that NP(m) is the triangle with vertices
(4, 2), (2, 4), and (0, 0). The theorem says that if m =

∑
g2i , then for all i, NP(gi) is

contained in the triangle with vertices (2, 1), (1, 2), and (0, 0). We proved this in Section
3 in the course of proving that m is not sos.

We end with another example of the Gram matrix method.

Example 7. Let f(X,Y ) = X2Y 2 + X2 + Y 2 + 1, then f is visibly a sum of squares:
f = (XY )2 +X2 + Y 2 + 12. We want to find all sos representations of f . In particular,
we might want to know whether there is an sos representation for f with fewer than
four squares. NP(f) is a rectangle with vertices (2, 2), (2, 0), (0, 2), and (0, 0) and hence,
by Theorem 10, if f =

∑
g2i , the Newton polytope of any gi must be contained in the

rectangle with vertices (1, 1), (1, 0), (0, 1), and (0, 0).

X

Y

(0,0)

(2,2)(0,2)

(2,0) X

Y

(0,0)

(1,1)(0,1)

(1,0)

This means that the only monomials that can occur in the gi’s are XY,X, Y , and 1. Let
M = (XY,X, Y, 1) and V = (vi,j) be a symmetric 4 × 4 matrix, the the linear system
arising from (12) is

v1,1 = 1, 2v1,2 = 0, 2v1,3 = 0, 2v1,4 + 2v2,3 = 0

v2,2 = 1, 2v2,4 = 0

v3,3 = 1, 2v3,4 = 0

v4,4 = 1

There is one parameter in the solution and the general Gram matrix for f is

V (r) :=


1 0 0 r
0 1 −r 0
0 −r 1 0
0 −r 1 0
r 0 0 1


The eigenvalues of V (r) are 1±r, hence V (r) is psd if and only if −1 ≤ r ≤ 1. It is easy to
see that r = 0 corresponds to the original sos representation f = (XY )2 +X2 +Y 2 +12.
Furthermore, V (r) has rank 2 is r = ± and rank 4 for all other values of r. The sos
representation corresponding to V (r) is

f = (XY + r)2 + (X − rY )2 + (
√

1− r2 Y )2 + (
√

1− r2)2.
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The two sos representations with two squares are f = (XY ± 1)2 + (X ∓ Y )2.
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