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1. Basic Notions

We shall denote a field by k i.e. any field say Zp ⊂ Q ⊂ R ⊂ C.

The cartesian product of n copies of Natural numbers, N× · · · × N.

We shall denote by R = k[x1, x2, · · · , xn], the polynomial ring in n variables with coeffi-
cients in k.
Our usual ring will be Q[x, y, z] since software (macaulay II, Cocoa, SAGE, etc) works in this
ring.

By an ideal I of R we mean a linear combination of polynomials say {f1, f2, · · · , ft} with
coefficients polynomials we denote this by I = {λ1f1 + λ2f2 + · · · + λtft : λi ∈ R}. We can
write I = 〈f1, f2, · · · , ft〉 and say that I is generated by f1, f2, · · · ft ∈ R.
We shall formalize what happens in the Gaussian Elimination Method in linear algebra and
Division Algorithm in 1 variable.

We notice that in both Gaussian Method and Division Algorithm we follow order i.e. the key
is in reducing the systems at hand identifying pivot elements.

Definition 1.1. Monomial Order:
A monomial order on R = k[x̄] is a relation “>” on on natural numbers (nonnegative integers),
Nn satisfying;

(a) > is a total (linear) ordering i.e. for any α, β ∈ Nn either α > β or α = β or α < β.

(b) if α > β then for γ ∈ Nn we have α+ γ > β + γ which is equivalent to xα > xβ.

(c) > is a well ordering on Nn.

Definition 1.2. LEXICOGRAPHIC Order(LEX)
Let a = (a1, · · · , an) and b = (b1, · · · , bn) be in Nn. Then a >lex b which is equivalent to
xa >lex x

b if the first nonzero element (pivot) in the vector a− b is positive.

Definition 1.3. GRADED Lexicographic Order(GrLEX)
Let a = (a1, · · · , an) and b = (b1, · · · , bn) be in Nn. Then a >grlex b which is equivalent to

xa >grlex x
b if |a| = ∑

ai > |b| =
∑
bi or |a| = ∑

ai = |b| = ∑
bi and a >lex b.

Definition 1.4. GRADED Reverse Lexicographic Order(GrevLEX)
Let a = (a1, · · · , an) and b = (b1, · · · , bn) be in Nn. Then a >grevlex b which is equivalent to

xa >grevlex x
b if |a| = ∑

ai > |b| =
∑
bi or |a| = ∑

ai = |b| = ∑
bi and the last nonzero entry

in a− b is negative.

Example 1.5.
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(1) For the ring of polynomials in 1 variable, k[x]monomial order is xa > xa−1 · · · > x > 1.

(2) For polynomials in 2 variables, k[x, y]
LEX order: x > y, x3 > x2y > xy3 > x > y3 > y2 > y > 1
GrLEX: x > y, xy3 > x3 > x2y > y3 > y2 > x > y > 1 which is the same for
GrevLEX.

Definition 1.6. Let f =
∑
a λax

a be polynomial in R = k[x̄] and > a monomial order on R
then

(a) the multidegree of f denoted by multideg(f) is given by multideg>(f) = max(a ∈ Nn)}
(the largest degree with respect to >)

(b) the leading monomial of f denoted by LM(f) is xmultideg(f)

(c) the leading coefficient of the leading monomial denoted by LC(f) and is given by
λmultideg(f)

(d) the leading term of f , LT (f) = LC(f).LM(f).

Exercise 1.7.

(1) Order the following polynomials using LEX, GrLEX, GrevLEX and weighted order
for given weights:
(a) 3x− 4y + 6z + 10x3 − xz + y3

(b) 2x3y5z2 − 3x4yz5 + xyz3 − xy4

(c) xyz4 − 5yz5 + x3y3 + y2z4

(d) 9x3y − 7xy2z + x2yz

(2) Determine the monomial order used for each of the following:
(a) 7x2y4z − 2xy6 + x2y2

(b) xy3z + xy2z2 + x2z3

(c) x4y5z + 2x3y2z − 4xy2z4

(3) Determine if f ∈ I given
(a) f = x3 − 1, I = 〈x6 − 1, x5 + x3 − x2 − 1〉
(b) f = x5 − 4x+ 1, I = 〈x〉

Theorem 1. Division Algorithm in R = k[x1, x2, · · · , xn]
Fix monomial order on Nn, and let F = (f1, f2, · · · , ft) be an ordered tuple of n polynomials
in R then for any f ∈ R there exists a1, a2, · · · , at, r ∈ R such that f can be expressed as
f = a1f1 + a2f2 + · · ·+ atft + r where r = 0 or a polynomial none of whose terms is divisible
by the leading term of any fi for all i and furthermore the multideg(f) ≥multideg(aifi).

Proof. Cox et al - Ideals, Varieties and Algorithms. �
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2. Groebner bases properties

Definition 2.1. Initial Ideal
The set of initial terms denoted by in>(f) or LT (f) is generates an ideal called the initial
ideal of I which we denote by 〈LT (I)〉 = {LT (f) : ∀f ∈ I}.
Definition 2.2. Let G = {g1, · · · , gt} ⊂ I is called a Groebner basis(GB) of the ideal I with
respect to some order if 〈LT (I)〉 = 〈LT (g1), · · · , LT (gt)〉.
Remark 2.3. If I = 〈g1, · · · , gt〉 then 〈LT (g1), · · · , LT (gt)〉 ⊆ 〈LT (I)〉.
Example 2.4.

Let I = 〈x2, xy − y2〉, f = x2y, setting F = (x2, xy − y2) ordered (lex) we divide f by F .
In once case f = y(x2) + 0(xy − y2) + 0 i.e. zero remainder. In the other case we will get
x(x2) + y(xy − y2)− y3.
From we here we observe 2 things, one is that the remainder is not necessarily unique on
division of f by F . Secondly we not that y3 ∈ I since it is a linear combination of generators
of I. Also y3 ∈ LT (I) but y3 /∈ 〈x2, xy〉 = 〈LT (x2), LT (xy − y2)〉 and so we conclude that F
is not a GB for I.

Definition 2.5. Monomial Ideal
An ideal I CR is called a monomial ideal if there exists a subset A of Nn such that I = 〈xα :
α ∈ A〉.
Example 2.6.

I = 〈x4y2, x3y4, x2y5〉C k[x, y].

Lemma 2.7. Let I = 〈xα : α ∈ A〉 then xβ ∈ I ⇐⇒ xα divides xα.

Lemma 2.8. Dickson’s Lemma
Let I = 〈xα : α ∈ A ⊂ Nn〉 C R be a monomial ideal then I can be writen in the form
I = 〈xα1 , · · · , xalphas〉 where αi ∈ A for all i. That is every monomial ideal I has a finite
generating set.

Exercise 2.9. Draw the ideal I = 〈x4y2, x3y4, x2y5〉Ck[x, y] on the graph of N2 where (m,n)
corresponds to the monomial xmyn and determine a generating set for I.

Proposition 2.10. If G = {g1, g2, · · · , gt} ∈ I C R is groebner basis then it generates I i.e.
〈G〉 = I.

Proof. Since {g1, g2, · · · , gt} ∈ I then 〈g1, g2, · · · , gt〉 ⊆ I.
Now suppose f ∈ I then by division algorithm in R we can express f as
f = a1g1 +a2g2 + · · ·+atgt+r where r = 0 or is a polynomial none of whose terms is divisible
by any LT (gi) for all i and ai ∈ R.
Now if r = 0 then f =

∑
aigi ∈ 〈G〉 and we are done. If r 6= 0 then we have r = f − a1g1 −

a2g2 − · · · − atgt and so LT (r) ∈ 〈LT (I)〉 = 〈G〉 i.e. LT (r) is divisible by some LT (gi) which
is a contradiction and so r = 0. Hence I = 〈G〉. �

Theorem 2. Every Ideal I CR = k[x1, x2, · · · , xn] has a groebner basis.

Proof. The initial ideal 〈I〉 is a monomial ideal i.e. generated by monomial, LT (f), f ∈ I
and Dickson’s lemma it is finitely generated i.e. there exists g1, g2, · · · , gt ∈ I such that
〈I〉 = 〈LT (g1), · · · , LT (gt)〉 and this is the definition of a groebner basis and by the proposition
above it generates I �
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Theorem 3. Hilbert Basis Theorem
Every Ideal I CR = k[x1, x2, · · · , xn] is finitely generated.

Proof. Choose a monomial order on R and determine a groebner basis G for an ideal I then
G finitely generates I. �

Proposition 2.11. Let G = {g1, g2, · · · , gt} be a groebner basis for an ideal I of R and let
f ∈ I. Then there is a unique r ∈ R satisfying

(a) No term of r is divisible by any LT (gi) for all i and
(b) there exists g ∈ I such that f = g + r

Proof. Division algorithm gives f =
∑
aigi + r so r is the remainder with r = 0 or satifies (i)

and now set g =
∑
aigi ∈ I.

Now for uniqueness of r, suppose f = g+r and f = g+r′ from which we have r−r′ = g′−g ∈ I
if r 6= r′ then LT (r − r′) ∈ 〈LT (I)〉 = 〈LT (g1), · · · , LT (gt))〉
which implies that LT (r − r′) is divisible by some LT (gi) which is a contradiction. �

3. How to determine a groebner basis

Given a set F = {f1, · · · , fs} ⊂ I C R and f ∈ R we shall denote by f̄F the remainder on
division of f by F .

Definition 3.1. S-polynomials
Let α = (α1, · · · , αn) and β = (β1, · · · , βn) ∈ Nn, and γ = (γ1, · · · , γn) where γi = max(αi, βi)
and also {f1, f2, · · · , ft} ∈ I, an ideal then the S−polynomial of fi and fj denoted by S(fi, fj)

for all i 6= j is defined as S(fi, fj) = xγ

LT (fi)
fi − xγ

LT (fj)
fj .

Theorem 4. BUCHBERGER’S CRITERION
A subset G = {g1, · · · , gt} of an ideal I C R is a groebner basis for I ⇐⇒ the remainder on
divison of S(gi, gj by G is zero for all i 6= j.

Proof. Cox. �

Theorem 5. BUCHBERGER’S ALGORITHM
Let I = 〈f1, f2, · · · , fs〉 6= 0 C k[x̄], then a groebner basis for I can be constructed in a finite
number of stepsby the following algorithm:
ALGORITHM:
INPUT: F = (f1, · · · , fs)
OUTPUT: groebner basis G = (g1, · · · , gt) for I
Let G := F
Repeat
Let G′ := G
For each pair {p, q}, p 6= q in G′

Do let S := S( ¯p, q)G
′
, the remainder of division of S(p, q) by G′

if S 6= 0
then G := G ∪ {S}
UNTIL G = G′

Remark 3.2.

We basically compute the S-polynomials then check for each nonzero remainder, add it to
the starting generating set and keep repeating the process until there are no more nonzero
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remainders, the set obtained is a groebner basis which may be unnecessarily large. We can
therefore apply the lemma below to reduce it.

Lemma 3.3. Let G = {g1, · · · , gs} be a groebner basis for an ideal I and p ∈ G such that
LT (p) ∈ 〈LT (G− {p})〉 then G− {p} is a groebner basis.

Proof. left as an exercise. �

Exercise 3.4. Groebner Basis construction

(1) Given the ideal I = 〈x2 − y, x3 − z〉 with lex order, determine a groebner basis for I.

(2) Given the ideal I = 〈x3 − 2xy, x2y − 2y2 + x〉, w.r.t grlex order determine a groebner
basis for I.

(3) Is the set {xy + 1, y2 − 1} a groebner basis for I = 〈xy + 1, y2 − 1〉C k[x, y]?

Lemma 3.5. A groebner basis G = {g1, · · · , gt} is said to be minimial if

(a) Each gi is monic and

(b) There is no p ∈ G such that LT (p) ∈ 〈LT (G− {p})〉

Remark 3.6.

(a) A minimial groebner basis is not unique.

(b) Two minimal groebner bases must have the same cardinality.

(c) Every ideal I CR = k[x1, · · · , xn] has a unique reduce groebner basis.
The next lemma aids us in that.

Lemma 3.7. A groebner basis G = {g1, · · · , gt} is said to be reduced if

(a) Each gi is monic and

(b) There is no term of p ∈ G is divisible by any LT (gi).
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