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1. Basic NOTIONS
We shall denote a field by k i.e. any field say Z, C Q C R C C.

The cartesian product of n copies of Natural numbers, N x --- x N.

We shall denote by R = k[z1,x2,--- ,2p], the polynomial ring in n variables with coeffi-
cients in k.

Our usual ring will be Q|z, y, z] since software (macaulay II, Cocoa, SAGE, etc) works in this
ring.

By an ideal I of R we mean a linear combination of polynomials say {fi, f2, -, f:} with
coefficients polynomials we denote this by I = {\1f1 + Aafo + -+ A\ fe : Ay € R}. We can
write I = (f1, fo, -+, fi) and say that I is generated by fi, fa, - ft € R.

We shall formalize what happens in the Gaussian Elimination Method in linear algebra and
Division Algorithm in 1 variable.

We notice that in both Gaussian Method and Division Algorithm we follow order i.e. the key
is in reducing the systems at hand identifying pivot elements.

Definition 1.1. Monomial Order:
A monomial order on R = k[Z] is a relation “>" on on natural numbers (nonnegative integers),
N™ satisfying;

(a) > is a total (linear) ordering i.e. for any «, 8 € N™ either a > 3 or a = f or a < S.
(b) if a > 3 then for v € N” we have o+~ > 8 + v which is equivalent to 2 > z°.

(¢) > is a well ordering on N"™.

Definition 1.2. LEXICOGRAPHIC Order(LEX)
Let a = (a1, -+ ,ayn) and b = (by,--- ,b,) be in N”. Then a >, b which is equivalent to
x% >, 20 if the first nonzero element (pivot) in the vector a — b is positive.

Definition 1.3. GRADED Lexicographic Order(GrLEX)
Let a = (a1, -+ ,a,) and b = (b1, -+ ,b,) be in N". Then a >4 e, b which is equivalent to
T > grer 20 if |a| = Y a; > b = b or a| = Y a; = [b] = S bi and a >, b

Definition 1.4. GRADED Reverse Lexicographic Order(GrevLEX)

Let a = (a1, ,a,) and b = (by,--- ,by) be in N”. Then a > grepiex b which is equivalent to
T > grevier 20 if |a| = Y a; > |b| = 2 b; or |a| = Y a; = |b] = Y. b; and the last nonzero entry
in @ — b is negative.

Example 1.5.



(1) For the ring of polynomials in 1 variable, k[zJmonomial order is 2% > 271 ... > 2 > 1.

(2) For polynomials in 2 variables, k[z, y]
LEX order: z >y, 2® > 22y > > >3 >9y2 >y > 1
GrLEX: z > y, 2y® > 2% > 2%y > y3 > y?> > 2 > y > 1 which is the same for
GrevLEX.

Definition 1.6. Let f =Y, Ayxz® be polynomial in R = k[Z| and > a monomial order on R
then

(a) the multidegree of f denoted by multideg( f) is given by multideg~ (f) = max(a € N")}
(the largest degree with respect to >)

(b) the leading monomial of f denoted by LM (f) is a™uttides(f)

(c) the leading coefficient of the leading monomial denoted by LC(f) and is given by
)‘multideg(f)

(d) the leading term of f, LT(f) = LC(f).LM(f).
Exercise 1.7.

(1) Order the following polynomials using LEX, GrLEX, GrevLEX and weighted order
for given weights:
(a) 3z — 4y + 62 + 1023 — 22 + o3
(b) 23522 — 32ty2’ + Yz’ — wy?
(c) wyzt — byzd + 23y + 224
(d) 923y — Tzy?z + 2%yz

(2) Determine the monomial order used for each of the following:
(a) Tx2yz — 290 + 2292

(b) 2z + wy?2? + 2223
(c) ztyPz + 223y%2 — day?24
(3) Determine if f € I given

(@) f=a3 -1, T= (2% —1,2° + 23— 22 - 1)
(b) f=a% 4z +1, 1= (x)

Theorem 1. Division Algorithm in R = k[x1,x2,- -+ , xy)
Fiz monomial order on N, and let F = (f1, fa,--- , ft) be an ordered tuple of n polynomials
i R then for any f € R there exists ay,as, -+ ,a, 7 € R such that f can be expressed as

f=a1fi+asfo+---+arft +r where r =0 or a polynomial none of whose terms is divisible
by the leading term of any f; for all i and furthermore the multideg( ) >multideg(a;f;).

Proof. Cox et al - Ideals, Varieties and Algorithms. O
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2. GROEBNER BASES PROPERTIES

Definition 2.1. Initial Ideal
The set of initial terms denoted by in~(f) or LT(f) is generates an ideal called the initial
ideal of I which we denote by (LT(I)) = {LT(f) :Vf € I}.

Definition 2.2. Let G = {g1, -+ ,¢:} C I is called a Groebner basis(GB) of the ideal I with
respect to some order if (LT (1)) = (LT (g1),--- ,LT(g¢)).

Remark 2.3. If I = (g1, - ,q) then (LT(g1),--- ,LT(g:)) C (LT (I)).
Example 2.4.

Let I = (22, 2y — y?), [ = 2%y, setting F = (2%, 2y — y?) ordered (lex) we divide f by F.

In once case f = y(x?) + 0(zy — y?) + 0 i.e. zero remainder. In the other case we will get
2(2?) + y(ry — y°) — v,

From we here we observe 2 things, one is that the remainder is not necessarily unique on
division of f by F. Secondly we not that y> € I since it is a linear combination of generators
of I. Also y® € LT(I) but y* ¢ (2%, xy) = (LT (2?), LT (vy — y?)) and so we conclude that F'
is not a GB for I.

Definition 2.5. Monomial Ideal
An ideal I < R is called a monomial ideal if there exists a subset A of N such that I = (x“ :
a € A).

Example 2.6.
I = (a*y? 2%y, 2%y°) < klz,y).
Lemma 2.7. Let I = (2% : a € A) then 2 € [ <= 2 divides z°.

Lemma 2.8. Dickson’s Lemma

Let I = (z* : « € A C N") < R be a monomial ideal then I can be writen in the form
I = (g, ... g¥Phas) where o; € A for all i. That is every monomial ideal I has a finite
generating set.

Exercise 2.9. Draw the ideal I = (z*y?, 23y*, 22y5) <k[z,y] on the graph of N?> where (m,n)
corresponds to the monomial x™y™ and determine a generating set for I.

Proposition 2.10. If G = {g1,92, - ,9:} € I < R is groebner basis then it generates I i.e.
(G)=1.

Proof. Since {g1, 92, ,g:} € I then (g1,92,-- , ) C I.

Now suppose f € I then by division algorithm in R we can express f as
f=a191+a292+--+arg;+r where r = 0 or is a polynomial none of whose terms is divisible
by any LT(g;) for all i and a; € R.

Now if r = 0 then f =Y a;g; € (G) and we are done. If r # 0 then we have r = f — a;1g1 —

azge — -+ —azgy and so LT (r) € (LT (I)) = (G) i.e. LT(r) is divisible by some LT(g;) which
is a contradiction and so r = 0. Hence I = (G). O
Theorem 2. FEvery Ideal I < R = k[x1,x2, -+ ,2y] has a groebner basis.

Proof. The initial ideal (I) is a monomial ideal i.e. generated by monomial, LT(f), f € I
and Dickson’s lemma it is finitely generated i.e. there exists ¢1,¢2, - ,g: € I such that
(I =(LT(g1),- - ,LT(g¢)) and this is the definition of a groebner basis and by the proposition
above it generates [ O
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Theorem 3. Hilbert Basis Theorem
Every Ideal I < R = k[x1,x9,- - ,xy,] is finitely generated.

Proof. Choose a monomial order on R and determine a groebner basis G for an ideal I then
G finitely generates 1. O

Proposition 2.11. Let G = {g1,92, - , gt} be a groebner basis for an ideal I of R and let
f € 1. Then there is a unique v € R satisfying

(a) No term of r is divisible by any LT (g;) for all i and

(b) there exists g € I such that f =g+

Proof. Division algorithm gives f = 3" a;g; +r so r is the remainder with » = 0 or satifies (i)
and now set g = > a;g9; € 1.

Now for uniqueness of r, suppose f = g+r and f = g+’ from which we have r—r' = ¢'—g € I
if r £ 7 then LT (r — ') € (LT(I)) = (LT(¢1),- -+ , LT (gt)))

which implies that LT (r — ') is divisible by some LT(g;) which is a contradiction. O

3. HOwW TO DETERMINE A GROEBNER BASIS

Given a set F' = {f1,---,fs} C I <R and f € R we shall denote by ff the remainder on
division of f by F'.

Definition 3.1. S-polynomials
Let o = (v, -+ ,ap) and B = (B1,- -+, fn) € N*, and v = (71, -+ ,7n) where v; = max(«y, 5;)
and also { f1, f2, -+, ft} € I, an ideal then the S—polynomial of f; and f; denoted by S(f;, f;)

for all i # j is defined as S(f;, f;) = L%Zfi)fi - Lz?gfj)fj.
Theorem 4. BUCHBERGER’S CRITERION

A subset G = {g1, -+ ,qt} of an ideal I < R is a groebner basis for I <= the remainder on
divison of S(gi,9; by G is zero for all i # j.
Proof. Cox. O

Theorem 5. BUCHBERGER’S ALGORITHM

Let I = (fi1, fa, -+, fs) # 0 Q k[z], then a groebner basis for I can be constructed in a finite
number of stepsby the following algorithm.:

ALGORITHM:

INPUT: F = (f1,-- , fs)

OUTPUT: groebner basis G = (g1, -+ ,g¢) for I

Let G:=F
Repeat
Let G .= G

For each pair {p,q}, p # q in G’

Do let S := S(p,_q)G/, the remainder of division of S(p,q) by G’
if S#0

then G := G U{S}

UNTIL G = G’

Remark 3.2.

We basically compute the S-polynomials then check for each nonzero remainder, add it to

the starting generating set and keep repeating the process until there are no more nonzero
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remainders, the set obtained is a groebner basis which may be unnecessarily large. We can
therefore apply the lemma below to reduce it.

Lemma 3.3. Let G = {g1, -+ ,9s} be a groebner basis for an ideal I and p € G such that
LT(p) € (LT(G — {p})) then G — {p} is a groebner basis.

Proof. left as an exercise. O

Exercise 3.4. Groebner Basis construction

(1) Given the ideal I = (x? —y, x> — 2) with lex order, determine a groebner basis for I.

(2) Given the ideal I = (x3 — 2zy, 2%y — 2y + ), w.r.t grlex order determine a groebner
basis for I.

(3) Is the set {xy +1,y> — 1} a groebner basis for I = (xy + 1,y% — 1) < k[z,y]?
Lemma 3.5. A groebner basis G = {g1, -+ ,g¢} is said to be minimial if

(a) Each g; is monic and

(b) There is no p € G such that LT (p) € (LT(G — {p}))
Remark 3.6.

(a) A minimial groebner basis is not unique.
(b) Two minimal groebner bases must have the same cardinality.

(c) Every ideal I < R = k[z1,--- ,xy) has a unique reduce groebner basis.
The next lemma aids us in that.

Lemma 3.7. A groebner basis G = {g1, -+ ,g:} is said to be reduced if
(a) Each g; is monic and

(b) There is no term of p € G is divisible by any LT (g;).



