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ABSTRACT

We investigate the relationship between a periodic graph operator and its complex Bloch variety

by studying the combinatorics and geometry of the Newton polytope of its characteristic polyno-

mial. When this polytope is only homothetically indecomposable, we show that the irreducibility

of the complex Bloch variety is preserved after a change of its period lattice. Associated to the

Newton polytope of this characteristic polynomial is a normal toric variety. We compactify the

complex Bloch variety in this toric variety to study its asymptotics. When the Newton polytope is

full, we give a spectral-theoretic interpretation of these asymptotics.
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NOMENCLATURE

Γ A periodic graph

◦ Composition of functions

Cn The n-dimensional complex affine space

X A vector space or a variety

C× The algebraic torus C \ {0}

Rn The n-dimensional vector space of real numbers

x = x1, . . . , xn Indeterminates or vectors of indeterminates

C[x] The ring of polynomials with coefficients in C in n variables

C[z±] The ring of Laurent polynomials with coefficients in C in d
variables

T The complex unit circle

Zd The d-dimensional lattice of integer vectors

Nd The d-dimensional vectors of natural numbers

Pn The n-dimensional complex projective space

V A function on the vertices of a periodic graph

c A function on the edges of a periodic graph or a labeling

V The set of vertices of a periodic graph

E The set of edges of a periodic graph

∆ The discrete Laplacian, also known as the graph Laplacian

e The vector (0, . . . , 0, 1) ∈ Zd+1

A A finite set

conv(A) The convex hull of a finite set A
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QZ The free full rank subgroup
d⊕
i=1

qiZ of Zd where qi ∈ N

Q An integer vector, a vector of natural numbers, or the convex
hull of A ∪ {e}

P A lattice polytope

F A face of a polytope

fF A facial polynomial of a polynomial f with respect to the
face F of a polytope

Newt f The Newton polytope of a polynomial f

u, v Vertices of a polytope or a graph

C[X] The coordinate ring of an affine variety

R A commutative ring with 1

spec(R) The spectrum of a ring R

det(Lc(z)) The determinant of a matrix Lc(z)

〈·, ·〉 An inner product

‖·‖ A norm on a vector space

`2(Z) The Hilbert space of square-summable functions on Z

L2(T) The Hilbert space of square-integrable functions on T

W A fundamental domain

σ(L) The spectrum of an operator L

ρ(L) The resolvent set of an operator L

L An operator on a Hilbert space or a module homomorphism

L∗ The adjoint of an operator L

F The Fourier or Floquet transform or a sheaf of modules

f̂ The Fourier or Floquet transform of a function f

Dc A dispersion polynomial with labeling c

XA An affine toric variety
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N A finitely generated free abelian group

M The dual group of a finitely generated free abelian group N

NA The monoid generated by a finite set A

C[NA] The monoid algebra of the monoid NA

σ A finitely generated submonoid of N or a cone in N

σ◦ The relative interior of a cone σ

σ∨ The polar of a finitely generated submonoid σ

Mσ The lineality space of a cone σ∨ ⊆M

Vσ The affine toric variety associated to a cone σ

Qσ A module of quasi-periodic functions associated to a cone σ

Q̃σ A sheaf of quasi-periodic functions on the toric variety Vσ

τ A face of a cone

Σ A fan

|Σ| The support of a fan Σ

XΣ The toric variety associated to a fan Σ

ΣP The inner normal fan of a polytope P

Q̃Σ A sheaf of quasi-periodic functions on the toric variety XΣ

MF The lineality space of a cone associated to the face F of a
polytope

VF The affine toric variety associated to the face F of a polytope

O The structure sheaf of a toric variety

B The base of the Newton polytope of a dispersion polynomial

inGLc(z) The facial matrix of the Floquet matrix Lc(z) corresponding
to a face G of the polytope Q such that F = |W |G is a face
of the full Newton polytope P = |W |Q

ΓF The facial graph of a periodic graph Γ corresponding to a
face F of the Newton polytope of a periodic graph operator
on quasi-periodic functions associated to the graph Γ
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1. INTRODUCTION

In the tight binding model of solid state physics, the Schrödinger operator (Laplacian plus

potential) models the wave function of an electron [1]. The spectrum of this operator is a closed

subset of R. On a periodic medium, and after a Floquet transform, the spectrum is revealed to be

the projection to R of an analytic hypersurface in Td × R, where T is the complex unit circle and

d is the ambient dimension.

We discretize the setting to study a periodic graph operator L acting on the Hilbert space `2(Γ)

of square-summable functions on the vertices V of a Zd-periodic graph Γ. As the action of Zd

commutes with the operator L, we may apply the Floquet transform to `2(Γ), which reveals further

the structure of the spectrum of L. The Floquet transform is a linear isometry between `2(Γ) and

the Hilbert space L2(Td)|W | of square-integrable functions on Td, where W ⊂ V is a fundamental

domain for the action of Zd on Γ. The action of L on L2(Td)|W | is multiplication by a |W | × |W |

matrix L(z) of Laurent polynomials in z ∈ Td.

For a fixed z ∈ Td, the matrix L(z) is Hermitian and it has |W | real eigenvalues λ1(z) ≤ · · · ≤

λ|W |(z). For i ∈ {1, . . . , |W |}, the function λi : Td → R is the i-th band function. This function

is continuous and piece-wise analytic on Td; its range is the i-th spectral band. The spectral bands

may overlap, or leave spaces between them known as spectral gaps. Developing an understanding

of this band-gap structure is useful in applications involving nano-materials, topological insulators,

and photonic crystals [27].

The union of the spectral bands is the spectrum σ(L) of the operator L. This set may also

be described as the projection to R of the set of points (z, λ) ∈ Td × R such that there exists a

nonzero function ψ ∈ L2(Td)|W | solving the eigenvalue problem (also known as spectral problem)

L(z)ψ = λψ. This set is known as the dispersion relation, and it may also be expressed as the set

BL(R) :=
{

(z, λ) ∈ Td × R | det
(
L(z)− λI|W |

)
= 0
}
,
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a real algebraic variety known as the (real) Bloch variety. The spectrum σ(L) is the image of BL(R)

under the projection map π : Td × R → R. For λ ∈ σ(L), the fiber FL,λ(R) := π−1(λ) ∩ BL(R)

is a real algebraic variety known as the (real) Fermi variety at energy level λ.

By allowing z ∈ (C×)d, the matrix L(z) is no longer selfadjoint for z ∈ (C×)d \ Td and its

spectrum σ(L) is no longer real; however, we gain several things. The (complex) Bloch variety is

the algebraic hypersurface BL := Var(D) in (C×)d×C given by the vanishing of the characteristic

polynomial D := det(L(z) − λI|W |) called the dispersion polynomial of L. For λ ∈ σ(L), the

fiberFL,λ := π−1(λ)∩BL is the (complex) Fermi variety at energy λ; it is a hypersurface in (C×)d.

Therefore, we may use effective methods of algebraic geometry and related areas to study these

varieties and their relationship to periodic graph operators and their spectra.

In [21], Gieseker, Knörrer, and Trubowitz used the geometry of complex Bloch and Fermi

varieties to address questions about a particular family of periodic graph operators. Their results

relied on a compactification of the Bloch variety by embedding its ambient space (C×)d × C in a

projective space and subsequent blowups. This compactification is highly singular and difficult to

understand. Bättig, motivated by an idea of Mumford [36], constructed an equivalent but intrinsic

compactification of the Bloch variety in a suitable toric variety, whose structure is understood by

the combinatorial data of a fan [3].

We simplify Bättig’s construction using polytopes. Following [6], the domain of the dispersion

polynomial D has a natural compactification in the normal toric variety XΣ associated to the fan Σ

of the Newton polytope P ofD, which is the convex hull of the exponent vectors ofD. The Zariski

closure of BL in XΣ determines a compactification of this Bloch variety. In this compactification,

the natural directions at infinity of BL are recorded by the faces of P . The structure of the Newton

polytope P was recently utilized in [15] by Faust and Sottile to give a bound for the number of

complex critical points of the Bloch variety; this bound is attained when the critical point equations

of the Bloch variety have no solutions on the points added in the compactification.

We investigate the geometry of the Newton polytope P of the dispersion polynomial D of a

periodic graph operator L and how it informs the geometry of complex Bloch varieties. Chapter 2

2



provides a background on the spectral theory of periodic graph operators and Chapter 3 discusses

the algebra and geometry necessary for this study. In Chapter 4, we give the necessary background

on polytopes and toric varieties. Chapter 5 builds on the theory of homothetically indecomposable

polytopes [32] to give criteria when the dispersion polynomial D is irreducible. The material of

Chapter 5 is based on published work with Matthew Faust in [12]. In Chapter 6, we compactify

the complex Bloch variety BL in the toric variety XΣ and show that when the Newton polytope

of D is full, we may associate to a particular face of the polytope P a periodic, labeled, directed

graph whose operator has Bloch variety equal to the intersection of the compactified Bloch variety

and the orbit corresponding to that face. Chapter 6 is based on work with Matthew Faust, Stephen

Shipman, and Frank Sottile in the upcoming article [13]. Chapter 7 gives a summary of this

dissertation and concluding remarks.

We write N for the set of natural numbers (0 ∈ N), Z for the set of integers, Q for the set of

rational numbers, R for the set of real numbers, and C for the set of complex numbers.
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2. SPECTRAL THEORY OF PERIODIC GRAPH OPERATORS

This dissertation studies mathematical structures arising in the spectral theory of periodic graph

operators. These operators belong to the larger class of bounded linear operators. We recall stan-

dard results of bounded linear operators and their spectra. For a thorough treatment of the basics

of spectral theory, see [7, Chapter 1] and [35].

2.1 Spectral Theory of Bounded Linear Operators

A metric on a complex vector space X is a function d : X×X → R such that for f, g, h ∈ X :

(i) d(f, g) ≥ 0 and d(f, g) = 0 if and only if f = g,

(ii) d(f, g) = d(f, g), and

(iii) d(f, h) ≤ d(f, g) + d(g, h).

The pair (X, d) is a metric space. If (X, d) is a metric space, a sequence {fn}∞n=1 ⊂ X

converges to f ∈ X if lim
n→∞

d(f, fn) = 0. A sequence {fn}∞n=1 is a Cauchy sequence if for every

ε > 0 there exists a nonnegative integer N such that d(fn, fm) ≤ ε for all n,m ≥ N . If every

Cauchy sequence has a limit, then (X, d) is complete with respect to the metric d.

A norm on X is a function ‖·‖ : X → R such that for f, g, h ∈ X and α ∈ C :

(i) ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0,

(ii) ‖αf‖ = |α| · ‖f‖, and

(iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖,

where |α| is the modulus of α. The pair (X, ‖·‖) is a normed space. A norm on X induces a metric

d‖·‖ on X by d‖·‖(f, g) := ‖f − g‖. A normed space (X, ‖·‖) is complete if it is complete with

respect to the metric d‖·‖.
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Example 2.1.1. Let `2(Z) :=
{
f : Z → C |

∑
n∈Z
|f(n)|2 < ∞

}
be the vector space of square-

summable functions on Z. Define a norm on `2(Z) by ‖f‖`2 :=
(∑
n∈Z

f(n)f(n)
)1/2

for any f ∈

`2(Z). The pair (`2(Z), ‖·‖`2) is a complete normed space. �

A subsetW of a normed spaceX is dense if for each f ∈ X there exists a sequence {fn}∞n=1 ⊂

W such that lim
n→∞

fn = f . It is countable if there exists a bijection W −→ Z. The normed space X

is separable if it contains a countable dense subset.

Let X = (X, ‖·‖X) and Y = (Y, ‖·‖Y ) be normed spaces. A (linear) operator from X to Y is

a pair (D(L), L), where D(L) is a subspace of X , called the domain of L, and L is a linear map

from D(L) to Y . The kernel of L is the subspace ker(L) := {f ∈ D(L) | Lf = 0}.

The operator (D(L), L) is bounded if D(L) = X and its norm, given by

‖L‖ := sup
{
‖Lf‖Y | f ∈ X and ‖f‖X = 1

}
,

is finite. Denote a bounded operator (D(L), L) from X to Y by L : X → Y . We will also use this

notation for the linear map L : X → Y . A bounded operator L : X → X is an operator L on X .

Example 2.1.2. The discrete Laplacian ∆ on `2(Z) is defined by (∆f)(n) := f(n+1) + f(n−1)

for all f ∈ `2(Z). Then we obtain

‖∆f‖2 =
∑
n∈Z

(f(n−1) + f(n+1))(f(n−1) + f(n+1))

=
∑
n∈Z

|f(n−1) + f(n+1)|2.

By Minkowski’s inequality∗,

(∑
n∈Z

(|f(n−1) + f(n+1)|2
)1/2

≤
(∑
n∈Z

|f(n−1)|2
)1/2

+
(∑
n∈Z

|f(n+1)|2
)1/2

= 2‖f‖.

Thus ‖∆f‖ ≤ 2‖f‖, showing that the discrete Laplacian on `2(Z) is bounded. �

∗If g, h ∈ `2(Z), then
(∑
n∈Z
|g(n) + h(n)|2

)1/2
≤
(∑
n∈Z
|g(n)|2

)1/2
+
(∑
n∈Z
|h(n)|2

)1/2
.
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Let X, Y , and Z be normed spaces and let L : X → Y and K : Y → Z be bounded operators.

The composition KL : X → Z is a bounded operator. If α ∈ C, then the operator αL : X → Y

defined by (αL)f := α · (Lf) is also bounded. We denote by I the identity operator on any vector

space. Thus, the identity operator I on X is defined by If := f for all f ∈ X . The operator

L : X → Y is invertible if there exists an operator L′ : Y → X such that LL′ = I and L′L = I . If

such an operator L′ exists, it is unique and it is the inverse of L and denoted by L−1. IfM : X → Y

is a bounded operator, then the operator L + M : X → Y defined by (L + M)f := Lf + Mf is

also a bounded operator.

Let L be a bounded operator on X . The set

ρ(L) := {λ ∈ C | L− λI : X → X is bijective and its inverse is bounded}

is the resolvent set ofL. Its complement σ(L) := Crρ(L) is the spectrum ofL. A complex number

λ ∈ σ(L) is an eigenvalue of L if there exists a nonzero function f ∈ X such that Lf = λf . If λ

is an eigenvalue of L, then f is an eigenfunction of λ. Thus, λ is an eigenvalue of L if and only

if ker(L − λI) = {f ∈ X | (L − λI)f = 0} 6= {0}. The set of eigenvalues of L is the discrete

spectrum of L and its complement in σ(L) is the essential spectrum of L.

Example 2.1.3. Suppose the discrete Laplacian ∆ on `2(Z) has an eigenvalue λ ∈ C. Then there

exists a nonzero function f ∈ `2(Z) such that ∆f = λf . Then ∆f(n) = f(n+1) + f(n−1) =

λf(n) is equivalent to the recurrence relation f(n) − λf(n−1) + f(n−2) = 0. Its characteristic

polynomial is x2 − λx + 1, which has solutions 1
2
(λ ±

√
λ2 − 4). Let r := 1

2
(λ +

√
λ2 − 4) and

s := 1
2
(λ−

√
λ2 − 4). Then f(n) = αrn + βsn for α, β ∈ C. Observe that r = s−1.

The discriminant of x2 − λx + 1 is λ2 − 4. If λ2 − 4 > 0, then r and s are real and r 6= s. If

α 6= 0, then lim
n→∞
|f(n)| =∞. If β 6= 0, then lim

n→−∞
|f(n)| =∞. Thus, f /∈ `2(Z).
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If λ2 − 4 ≤ 0, then parametrize λ by λ = 2 cos θ :

r =
1

2
(λ+

√
λ2 − 4) =

1

2
(2 cos θ −

√
2 cos θ)2 − 4) = eiθ, and

s =
1

2
(λ−

√
λ2 − 4) =

1

2
(2 cos θ +

√
2 cos θ)2 − 4) = e−iθ.

Then f(n) = αeinθ+βe−inθ. Thus f is constant or oscillating as n goes to±∞. Hence, f /∈ `2(Z)

and the discrete spectrum of ∆ is empty. �

An inner product on a vector spaceX is a function 〈·, ·〉 : X×X → C such that for f, g, h ∈ X

and α, β ∈ C :

(i) 〈αf + βg, h〉 = α〈f, g〉+ β〈g, h〉,

(ii) 〈f, αg + βh〉 = α〈f, g〉+ β〈g, h〉,

(iii) 〈f, f〉 > 0 (where f 6= 0), and

(iv) 〈f, g〉 = 〈g, h〉,

where α 7→ α denotes complex conjugation. The pair (X, 〈·, ·〉) is an inner product space. An

inner product on X induces a norm ‖·‖〈·,·〉 on X by ‖x‖〈·,·〉 := 〈x, x〉1/2. The inner product space

(X, 〈·, ·〉) is complete if it is complete with respect to the metric d‖·‖〈·,·〉 , in which case (X, 〈·, ·〉) is

a Hilbert space.

Example 2.1.4. For f, g ∈ `2(Z), define 〈f, g〉`2 :=
∑
n∈Z

f(n)g(n). Then 〈·, ·〉`2 is an inner prod-

uct on `2(Z) and it induces the norm ‖·‖`2 defined in Example 2.1.1. The inner product space

(`2(Z), 〈·, ·〉`2) is complete, making it into a Hilbert space [7, Theorem 1.2.7]. Since Z is count-

able, it follows that `2(Z) is separable. �

Let H := (H, 〈·, ·〉) be a separable complex Hilbert space and let L be a bounded operator on

H . The adjoint of L is the operator L∗ on H such that for f, g ∈ H , 〈L∗f, g〉 = 〈f, Lg〉. The

operator L∗ is bounded [7, Proposition 1.4.5]. If L∗ = L, then L is selfadjoint.
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Example 2.1.5. Let ∆ be the discrete Laplacian on `2(Z). For f, g ∈ `2(Z),

〈∆f, g〉 =
∑
n∈Z

(f(n+1) + f(n−1))g(n)

=
∑
n∈Z

f(n)(g(n+1) + g(n−1)) = 〈f,∆g〉,

showing that ∆ on `2(Z) is selfadjoint. �

Proposition 2.1.6. [7, Proposition 1.4.7] . Let H be a separable complex Hilbert space, and let L

be a bounded operator on H . If L is selfadjoint, then σ(L) is a compact subset of R.

Let L be a bounded operator on a separable complex Hilbert space H , and let λ ∈ C. A

sequence {wn}∞n=0 ⊂ H is a Weyl sequence for the operator L at λ if for each n ∈ N, ‖wn‖ = 1

and lim
n→∞
‖(L− λI)wn‖ = 0.

Theorem 2.1.7. [7, Theorem 1.4.20]. Let H be a separable complex Hilbert space and let L be a

bounded operator on H . If {wn}∞n=0 ⊂ H is a Weyl sequence for the operator L at λ ∈ C, then

λ ∈ σ(L). If L is selfadjoint and λ ∈ σ(L), then there exists a Weyl sequence for L at λ.

Let U be a bounded operator on H and let U∗ be its adjoint. Then U is unitary if U∗ = U−1.

Assume U is unitary. If L is a bounded operator on H , then the operator L − λI is invertible

if and only if U∗(L − λI)U is invertible. It follows that σ(L) = σ(U∗LU). More generally, if

G := (G, 〈·, ·〉G) is a separable complex Hilbert space, a bounded operator U : G → H is unitary

if it is invertible and 〈Uf,Ug〉H = 〈f, g〉G for all f, g ∈ G. If such U exists, then U−1 = U∗ and G

and H are isomorphic as Hilbert spaces. Consequently, σ(L) = σ(ULU∗).

Example 2.1.8. The (compact) torus is the group T := {z ∈ C× | |z| = 1}. Consider the

vector space L2(T) :=
{
f : T → C |

∫
T
|f(z)|2dz < ∞

}
of square-integrable functions on

the torus T, where dz is the Haar measure on T (hence
∫
T
dz = 1). For f, g ∈ L2(T), define

〈f, g〉L2 :=
∫
T
f(z)g(z)dz. Then 〈·, ·〉L2 is an inner product on L2(T) and the pair (L2(T), 〈·, ·〉L2)

is a Hilbert space.
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Consider the bounded operator F : `2(Z) −→ L2(T) defined by (F (f))(z) :=
∑
n∈Z

f(n)z−n for

f ∈ `2(Z) and all z ∈ T. This operator is the Fourier transform from `2(Z) to L2(T). We write f̂

for the Fourier transform F (f) of a function f ∈ `2(Z). The adjoint F ∗ : L2(T) −→ `2(Z) of the

Fourier transform F : `2(Z) −→ L2(T) is given by (F ∗(g))(n) :=
∫
T
g(z)zndz for g ∈ L2(T) and

all n ∈ Z. The Fourier transform is unitary. Let f, g ∈ `2(Z) and let f̂ , ĝ ∈ L2(T) be the Fourier

transform of f and g, respectively. Then

〈f̂ , ĝ〉L2 =

∫
T

f̂(z)ĝ(z)dz =

∫
T

∑
n∈Z

f(n)z−n ·
∑
m∈Z

g(m)z−mdz

=

∫
T

∑
n∈Z

f(n)z−n ·
∑
m∈Z

g(m)zmdz.

If m 6= n, then
∫
T
f(n)z−ng(m)zmdz = 0. Thus

∫
T

∑
n∈Z

f(n)z−n ·
∑
m∈Z

g(m)zmdz =

∫
T

∑
n∈Z

f(n)g(n)dz =
∑
n∈Z

f(n)g(n) = 〈f, g〉`2 .

Let ∆ be the discrete Laplacian on `2(Z). Since F is unitary, it follows that σ(∆) = σ(F∆F ∗).

Let λ ∈ C. Consider how the operator F∆F ∗ − λI acts on f̂ ∈ L2(T). Fix z0 ∈ T. Then

(
(F∆F ∗ − λI)f̂

)
(z0) =

(
F

∫
T

(f̂(z)zn+1 + f̂(z)zn−1)dz
)

(z0)− λf̂(z0)

=
(
(z0+z−1

0 −λ)f̂
)
(z0).

It follows that for each z ∈ T, F∆F ∗ − λI acts on f̂ as multiplication by z+z−1−λ. We will

show this is a bijection if and only if z+z−1−λ 6= 0. Since z ∈ T, it follows that z+z−1 = 2 Re(z)

(Re(z) is the real part of the complex number z). As Re(z) ∈ [−1, 1], σ(∆) = [−2, 2]. Since the

discrete spectrum of ∆ is the empty set (see Example 2.1.3), the essential spectrum of ∆ is [−2, 2].

Suppose λ ∈ C satisfies z+z−1 6= λ for all z ∈ T. Then the operator G : L2(T) → L2(T),

defined by (G ĝ)(z) := 1
z+z−1−λ ĝ(z) for ĝ ∈ L2(T) and all z ∈ T, is well-defined. This operator is

the inverse of F∆F ∗ − λI . It follows that λ ∈ ρ(∆).
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Conversely, suppose there exists z0 ∈ T such that z0+z−1
0 = λ. Set z0 = e2πiθ for some θ.

Consider the sequence {wn}∞n=0 ⊂ L2(T), where for each n ∈ N, wn(z) =
√
n/2 if z = e2πiθt

with t ∈ [−1/n, 1/n] and wn = 0 otherwise. For each n ∈ N, ‖wn‖ = 1 and

lim
n→∞
‖(F∆F ∗ − λI)wn‖ = 0.

Then {wn}∞n=0 is a Weyl sequence for F∆F ∗ − λI at λ. By Theorem 2.1.7, λ ∈ σ(∆). Thus

λ ∈ σ(∆) if and only if z+z−1 = λ for some z ∈ T. �

2.2 Groups and Periodic Graphs

A binary operation on a nonempty set G is a function ∗ : G×G→ G such that (a, b) 7→ a ∗ b.

Remark 2.2.1. Let ∗ be a binary operation on a nonempty set G and let a, b ∈ G. There are several

notations for the image of (a, b) under ∗. In the multiplicative notation, ab := a ∗ b is called the

product of a and b. In the additive notation, a+ b := a ∗ b is called the sum of a and b. �

The operation ∗ is associative if for a, b, and c in G, a ∗ (b ∗ c) = (a ∗ b) ∗ c. We denote the pair

(G, ∗) byG. We callG a monoid if there exists an element e ∈ G such that for any a ∈ G, a∗e = a

and e∗a = a. This element is unique and is called the identity of G. A monoid G is called a group

if for any a ∈ G, there exists an element b ∈ G such that a ∗ b = e and b ∗ a = e. This element

is unique and is called the inverse of a. Let H be a nonempty subset of G that is closed under the

binary operation ∗ on G. If H is itself a group under ∗, then the pair (H, ∗) is called a subgroup of

G, and denoted by H . The index of a subgroup H of G is the (cardinal) number [G : H] of distinct

left (equivalently, right) cosets of H in G. If [G : H] is finite then H is a finite-index subgroup of

G. A group A is abelian if its binary operation is commutative: for a, b ∈ A, a ∗ b = b ∗ a. We will

use the additive notation for abelian groups. The identity of an abelian group A is denoted by 0,

and the inverse of a ∈ A is denoted by −a.

Given two monoids G := (G, ∗) and H := (H,�), a monoid homomorphism of G into H

is a function f : G → H such that f(a ∗ b) = f(a)�f(b) for a, b ∈ G. If f is a bijection,

then f is called a monoid isomorphism, and G and H are said to be isomorphic (denoted by
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G ∼= H). A monoid homomorphism f : G → G is called a monoid endomorphism of G. A

monoid homomorphism (resp. monoid isomorphism, monoid endomorphism) between two groups

is called a group homomorphism (resp. group isomorphism, group endomorphism).

Let A be an (nonempty) indexing set, and for each α ∈ A, let Gα := (Gα, ∗α) be a group. The

direct product of {Gα | α ∈ A} is the set-theoretic product of the sets Gα, and denoted by
∏
α∈A

Gα.

The set
∏
α∈A

Gα admits a group structure under the componentwise operation ∗ derived from the

operations ∗α : if (aα)α∈A, (bα)α∈A ∈
∏
α∈A

Gα, then (aα)α∈A ∗ (bα)α∈A := (aα ∗α bα)α∈A. If eα is

the identity of Gα, then (eα)α∈A is the identity of
∏
α∈A

Gα. The inverse of (aα)α∈A ∈
∏
α∈A

Gα is

(aα)−1
α∈A := (a−1

α )α∈A. If {Aα | α ∈ A} is a family of groups, the direct sum of {Aα | α ∈ A} is

the subset
⊕
α∈A

Aα of the direct product
∏
α∈A

Aα consisting of elements (aα)α∈A with aα ∈ Aα such

that aα = 0 for all but finitely many indices α. It follows that
⊕
α∈A

Aα is a subgroup of
∏
α∈A

Aα.

Let G be a group and let B be a subset of G. Let {Hα | α ∈ A} be the family of all subgroups

of G that contain B. The intersection 〈B〉 :=
⋂
α∈A

Hα is the subgroup of G generated by B. The

elements of B are generators of the subgroup 〈B〉. If B is a finite subset of G and G = 〈B〉, then

G is finitely generated.

Theorem 2.2.2. [25, Theorem I.2.8] If A is an abelian group and B is a nonempty subset of A,

then the subgroup 〈B〉 ofA consists of all linear combinations n1b1 +· · ·+nkbk for n1, . . . , nk ∈ Z

and b1, . . . bk ∈ B.

A basis of an abelian groupA is a subsetB ofA such thatA = 〈B〉 and for distinct b1, . . . , bk ∈

B and n1, . . . , nk ∈ Z,

n1b1 + · · ·+ nkbk = 0 =⇒ ni = 0 for every i ∈ {1, . . . , k}.

Theorem 2.2.3. [25, Theorem II.1.1] Let A be an abelian group. The following conditions are

equivalent.

(i) A has a nonempty basis.

(ii) A is isomorphic to a direct sum of copies of the additive group Z of integers.
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(iii) There is a nonempty set B and a function ι : B → A with the following property: given

an abelian group A′ and a function f : B → A′, there exists a unique group homomorphism

f : A→ A′ such that f ◦ ι = f .

An abelian group A satisfying Theorem 2.2.3 is a free abelian group on the set B.

Theorem 2.2.4. [25, Theorem II.1.2] Any two bases of a free abelian group A have the same

cardinality.

If B is a basis of a free abelian group A, then the cardinality |B| is the rank of A. A lattice is a

finitely generated free abelian group.

An (right) action of a group G on a set S is a function · : G × S → S, where (a, s) 7→ a · s,

such that for all s ∈ S, e · s = s, and for a, b ∈ G, (a ∗ b) · s = a · (b · s). An action of G on S

is free if for any s ∈ S, the induced function G → S, where a 7→ a · s, is injective. The orbit of

s ∈ S under the action of G is the set G · s := {a · s | a ∈ G}, and the set of orbits of S under G

is denoted by S/G. An action of G on S is cofinite if S/G is a finite set.

For more on periodic graphs, see [2, 4, 15]. A graph is a pair Γ := (V , E) where V is a set of

vertices and where E ⊂ V ×V is a set of edges. We write edges of Γ as (u, v) ∈ E , where u, v ∈ V

(we also use the notation u ∼ v for (u, v) ∈ E). The graph Γ is directed if it has a function on E

assigning to each edge an ordered pair of vertices. The graph Γ is undirected if (u, v) ∈ E if and

only if (v, u) ∈ E . We identify (u, v) with (v, u). A vertex u is adjacent to a vertex v if (u, v) ∈ E ,

and (u, v) is incident to both u and v. If every vertex is adjacent to a finite number of vertices, then

Γ is locally finite. A loop of Γ is an edge that connects a vertex to itself. If Γ is undirected and

does not have loops, then Γ is simple.

Let G be a finitely generated free abelian group. A locally finite simple graph Γ = (V , E) is

G-periodic if it is equipped with a free cofinite action of G on V and E . In this context, G is the

period lattice of Γ. If Γ is G-periodic, a fundamental domain for the action of G on V is a finite set

W of representatives of the orbits of G on V .

It is useful (but not necessary) to consider the graph Γ immersed in Rd so that Zd acts on Γ by

translation: for a ∈ Zd and v ∈ V , a+v ∈ V , and with edge incidences preserved: for (u, v) ∈ E ,
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a+(u, v) := (a+u, a+v) ∈ E . An edge incident on W has the form (u, a+v) for some u, v ∈ W ,

and a ∈ Zd. The collection of a ∈ Zd such that (u, a+v) ∈ E for some u, v ∈ W is the support of

Γ and denoted by A(Γ). Figure 2.1 illustrates two periodic graphs.

Figure 2.1: Two periodic graphs.

The graph to the left is Z-periodic with support {−1, 0, 1}, and the graph to the right ([15,

Figure 2]), known as the hexagonal lattice, is Z2-periodic with support {(±1, 0), (0, 0), (0,±1)}.

Given q1, . . . , qd ∈ N, let QZ :=
d⊕
i=1

qiZ, which is a finite-index subgroup of Zd. A Zd-periodic

graph Γ carries the structure of a QZ-periodic graph. For a chosen fundamental domain W for

the Zd-action on Γ, QZ induces the fundamental domain WQ, which is the union of the sets a+W

where a ∈ Zd with 0 ≤ ai < qi for i = 1, . . . , n. The set WQ is the Q-expansion of W . Figure 2.2

([12, Figure 2]) shows a (3, 2)-expansion of the fundamental domain W of the hexagonal lattice

depicted in Figure 2.1.

Figure 2.2: A periodic graph. Its period lattice is (3, 2)Z.
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2.3 Operators on Periodic Graphs

Let Γ = (V , E) be a Zd-periodic graph. A labeling (c, V ) of Γ is a pair of functions c : E → R

and V : V → R that are constant on orbits. For a given labeling c := (c, V ), the periodic graph

operator Lc acts on complex-valued functions f on V . For a function f : V → C, the function Lcf

is defined by its value at u ∈ V ,

(Lcf)(u) := V (u)f(u)−
∑

(u,v)∈E

c(u,v)f(v)

Example 2.3.1. If c is the constant function of value 1, then Lc is a discrete periodic Schrödinger

operator. If V is the zero function, then Lc is a Laplace-Beltrami operator, and if in addition, c is

the constant function of value 1, then Lc is the graph Laplacian. �

Let `2(Γ) := {f : V → C |
∑
u∈V
|f(u)|2 <∞} be the vector space of square summable functions

on V . Equipping `2(Γ) with the inner product 〈f, g〉 :=
∑
u∈V

f(u)g(u) gives it the structure of a

Hilbert space.

Proposition 2.3.2. The operator Lc on `2(Γ) is bounded and selfadjoint.

Proof. Let f ∈ `2(Γ). As a generalization of Example 2.1.2, since V and c are constant on vertex

and edge orbits, respectively, we obtain

‖Lcf‖ ≤
(∑
u∈W

|V (u)|+
∑

(v,w)∈EW

|c(v,w)|
)
· ‖f‖,

where EW is a set of orbit representatives for the action of Zd on E . Thus, Lc is bounded. For any

f, g ∈ `2(Γ),

〈Lcf, g〉 =
∑
u∈V

(
V (u)f(u)−

∑
(u,v)∈E

c(u,v)f(v)
)
g(u)

=
∑
u∈V

(
V (u)f(u)g(u)−

∑
(u,v)∈E

c(u,v)f(v)g(u)
)
.
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Relabeling vertices, we obtain

∑
u∈V

f(u)
(
V (u)g(u)−

∑
(u,v)∈E

c(u,v)g(v)
)

= 〈f, Lcg〉.

By Proposition 2.1.6, the spectrum σ(Lc) is a compact subset of R.

2.4 The Floquet Transform

For more, see [2, 26, 27]. Let Γ = (V , E) be a Zd-periodic graph and let W be a fundamental

domain for the action of Zd on Γ. As the action of Zd commutes with Lc, we may apply the Floquet

transform to `2(Γ), which reveals more structure of σ(Lc). For a function f ∈ `2(Γ), the Floquet

transform of f is the function

F (f) : Td × V −→ C

(z, u) 7−→
∑
a∈Zd

f(a+ u)z−a

which satisfies (F (f))(z, b + u) = zb(F (f))(z, u) for b ∈ Zd. Thus, F (f) is determined by its

values on W . If f ∈ `2(Γ), then

∑
u∈W

∫
Td

|(F (f))(z, u)dz|2 <∞,

showing (F (f))(z, u) ∈ L2(Td) for each u ∈ W . By the Plancherel Theorem, the Floquet

transform is a linear isometry between `2(Γ) and the Hilbert spaceL2(Td,CW ) of square-integrable

functions on Td, where CW is the vector space of complex-valued functions on W . For u ∈ W ,

the function eu : W → C is given by

eu(v) :=


1 if v = u,

0 otherwise.
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The set {eu | u ∈ W} forms a basis of CW called the standard basis of CW . Given f ∈ `2(Γ), we

will write f̂ for the Floquet transform F (f) in L2(Td,CW ).

Proposition 2.4.1. The Floquet transform F : `2(Γ) −→ L2(Td,CW ) is a unitary operator.

Proof. Let f, g ∈ `2(Γ) and write f̂ , ĝ for their Floquet transforms in L2(Td,CW ). Then

〈f̂ , ĝ〉L2 =

∫
Td

f̂(z, u)ĝ(z, w)dz =

∫
Td

∑
a∈Zd

f(a+u)z−a ·
∑
b∈Zd

g(b+u)z−bdz.

Since z−1 = z, it follows that

∫
Td

∑
a∈Zd

f(a+u)z−a ·
∑
b∈Zd

g(b+u)z−bdz =

∫
Td

∑
a∈Zd

f(a+u)z−a ·
∑
b∈Zd

g(b+u)zbdz

=

∫
Td

∑
a∈Zd

f(a+u)z−a ·
∑
b∈Zd

g(b+u)zbdz.

Similar to Example 2.1.8, observe that if a 6= b, then
∫
Td
f(a+u)z−ag(b+u)zbdz = 0. Then

〈f̂ , ĝ〉L2 =

∫
Td

∑
a∈Zd

f(a+u)z−a ·
∑
b∈Zd

g(b+u)zbdz

=
∑
a∈Zd

f(a+u)g(a+u) = 〈f, g〉`2 .

Let f ∈ `2(Γ) with Floquet transform f̂ ∈ L2(Td,CW ) and let F ∗ be the adjoint of F . For

u ∈ W , the function f̂(u) is a function of z. The action of FLcF ∗ on f̂ is defined by the value of

the function FLcF ∗f̂ at u ∈ W :

(FLcF
∗f̂)(u) = V (u)f̂(u)−

∑
(u,a+v)∈E

zac(u,a+v)f̂(v),

where v ∈ W and a ∈ A(Γ). In using the standard basis for CW , the operator FLcF ∗ becomes

multiplication by a |W |×|W | matrix Lc(z) whose rows and columns are indexed by the vertices

of W . Let u, v ∈ W . If δu,v is the Kronecker delta function, the matrix entry in position (u, v) is
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given by the finite sum

δu,vV (u)−
∑

(u,a+v)∈E

c(u,a+v)z
a. (2.1)

This entry is a Laurent polynomial in z ∈ Td with exponents coming from the support A(Γ). The

matrix Lc(z) is called the Floquet matrix of Lc. Let a ∈ A(Γ). Observe that (u, a+ v) ∈ E if and

only if (−a + u, v) ∈ E , c(u,a+v) = c(−a+u,v), and for z ∈ Td, za = z−a. It follows that for each

z ∈ Td, this matrix is Hermitian since Lc(z)T = Lc(z
−1) = L(z) = L(z).

As a generalization of Example 2.1.8, we have the following proposition.

Proposition 2.4.2. Let λ ∈ C. The operator

FLcF
∗ − λI : L2(Td,CW ) −→ L2(Td,CW )

is a bijection if and only if, for each z ∈ Td, Lc(z) − λI|W | is a bijection. The spectrum σ(Lc) is

the union of the eigenvalues of the matrix Lc(z) for each z ∈ Td.

Example 2.4.3. [15, Example 1.1] Let Γ be the hexagonal lattice from Figure 2.1. Figure 2.3

([15, Figure 3]) depicts a labeling in a neighborhood of a fundamental domain W for the action

of Z2 on Γ. The set W = {u, v} consists of two vertices. There are three edge orbits, with labels

α, β, and γ.

α
β

β

γ

γ

x

y

u
v

Figure 2.3: A labeling of the hexagonal lattice.

Let L be the operator with potential V and with edge orbits labeled by α, β, and γ as in Figure 2.3.
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Let (x, y) ∈ T2. Then the operator FLF ∗ acts on f̂ ∈ L2(T2,C2) by

(FLF ∗f̂)(u) = V (u)f̂(u)− αf̂(v)− βx−1f̂(v)− γy−1f̂(v),

(FLF ∗f̂)(v) = V (v)f̂(v)− αf̂(u)− βxf̂(u)− γyf̂(u).

Collecting coefficients from f̂(u) and f̂(v), the operator FLF ∗ becomes multiplication by the

matrix

L(x, y) =

 V (u) −α−βx−1−γy−1

−α−βx−γy V (v)

 .

For (x, y) ∈ T2, L(x, y)T = L(x−1, y−1) = L(x, y) = L(x, y), so the matrix L(x, y) is Hermitian,

showing that the operator L is selfadjoint. �

2.5 Bloch and Fermi Varieties

This section is adapted from [12, Section 1.3]. For z ∈ Td, the matrix Lc(z) is Hermitian.

Thus, it has |W | real eigenvalues λ1(z) ≤ λ2(z) ≤ · · · ≤ λ|W |(z). For j ∈ {1, . . . , |W |}, the

function λj : Td → R is the j-th band function, and its graph
{

(z, λj(z)) | z ∈ Td
}

is the j-th

branch. The image of λj is the j-th spectral band.

The dispersion polynomial of Lc(z) is the characteristic polynomial Dc := det(Lc(z)−λI|W |),

and the (real) Bloch variety of the operator Lc is the hypersurface

BLc(R) = Var(Dc) :=
{

(z, λ) ∈ Td×R | Dc(z, λ) = 0
}
.

The image of the Bloch variety under the projection to R is the spectrum σ(Lc), and the projection

is a function λ on the Bloch variety.

Example 2.5.1. Let L be the operator from Example 2.4.3. Figure 2.4 ([15, Figure 4]) shows the

Bloch variety of the operator L with zero potential and edge orbits labeled by α = 6, β = 2, and

γ = 3.
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Figure 2.4: A Bloch variety for the hexagonal lattice.

The spectrum σ(L) is the union of two spectral bands. �

To use strong methods from classical algebraic geometry, it is natural to allow complex parame-

ters c : E → C and V : V → C and variables z ∈ (C×)d and λ ∈ C. With complex parameters and

variables, the matrix Lc(z) is no longer Hermitian, but it retains the property Lc(z)T = Lc(z
−1).

The (complex) Bloch variety of the operator Lc is the hypersurface

BL = Var(Dc) :=
{

(z, λ) ∈ (C×)d × C | Dc(z, λ) = 0
}
.

In the complex Bloch variety, we cannot distinguish the branches λj . Thus, we will consider

projection to the last coordinate as a function λ on the complex Bloch variety. A critical point of

the function λ on the complex Bloch variety of the operator Lc is a point where the gradients in

(C×)d×C of λ and Dc are linearly dependent. The value of the function λ on such a critical point

is a critical value of λ.
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3. ALGEBRAIC GEOMETRY

As we saw in Section 2.5, the spectrum of a periodic graph operator is the image of a projection

of the Bloch variety of the operator, which is an affine algebraic variety. Thus, we outline the

algebraic geometry relevant to the study of Bloch varieties. For more background in algebraic

geometry, see any of [5, 6, 22, 31].

3.1 Ideals and Varieties

A monomial in the variables x1, . . . , xn is the product xa := xa1
1 · · ·xann , where a1, . . . , an are

non-negative integers. Given a monomial xa, its (total) degree is the sum
n∑
i=1

ai. A polynomial f

in the variables x1, . . . , xn is a linear combination of monomials

f =
∑
a∈Nn

cax
a,

where ca ∈ C is a coefficient and all but finitely many coefficients are 0. The product caxa of a

coefficient ca and a monomial xa is a term. The support of a polynomial f is the set A(f) ⊂ Nn

of exponent vectors that appear in f with a nonzero coefficient. The set of polynomials in the

variables x1, . . . , xn is denoted by C[x1, . . . , xn] and it is a ring under addition and multiplica-

tion. A polynomial f ∈ C[x1, . . . , xn] is irreducible if it is not constant and whenever there exist

polynomials g, h ∈ C[x1, . . . , xn] with f = gh, either g or h is constant.

The set of n-tuples z = (z1, . . . , zn) of complex numbers is (complex) affine n-space and it

is denoted by Cn. A polynomial f ∈ C[x1, . . . , xn] defines a function f : Cn → C. Thus, for a

subset S ⊆ C[x1, . . . , xn] of polynomials, the set

Var(S) := {z ∈ Cn | f(z) = 0 for f ∈ S}

is the affine (algebraic) variety defined by S. If S consists of a single polynomial f ∈ C[x1, . . . , xn],

then Var(S) = Var(f) is a hypersurface. If S consists of finitely many polynomials f1, . . . , fm,
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then we write Var(f1, . . . , fm) for Var(S). If X and Y are affine varieties and X ⊆ Y , then X is

a subvariety of Y .

The product X × Y of two affine varieties X and Y is an affine variety. If X ⊆ Cm is

defined by f1, . . . , fr ∈ C[x1, . . . , xm] and Y ⊆ Cn is defined by g1, . . . , gs ∈ C[y1, . . . , yn], then

X × Y ⊆ Cm × Cn = Cm+n is defined by f1, . . . , fr, g1, . . . , gs ∈ C[x1, . . . , xm, y1, . . . , yn].

Example 3.1.1. Affine n-space Cn = Var(0) and the empty set ∅ = Var(1) are affine varieties. �

Example 3.1.2. The set Matm×n(C) of m×n matrices may be identified with Cmn. �

Example 3.1.3. The set GLm(C) of matrices M ∈ Matm×m(C) with detM 6= 0 may be identified

with the set
{

(t,M) ∈ C × Matm×m(C) | t detM = 1
}

, making it into a hypersurface in

C×Matm×m(C). If M ∈ GLm(C) and N ∈ GLm(C), then det(MN) = (detM) · (detN) 6= 0.

Let M ∈ GLm(C). Since detM 6= 0, M has an inverse M−1, whose determinant is nonzero.

Thus, M−1 ∈ GLm(C) and GLm(C) is a group known as the general linear group. If m = 1, then

this is the group of invertible elements of C and denoted by C×. The group of invertible diagonal

m×m matrices with complex entries is the algebraic m-torus (C×)m. �

Example 3.1.4. Let Γ be a Zd-periodic graph and let Lc be a periodic graph operator on `2(Γ). Let

Dc be the dispersion polynomial of Lc. The complex Bloch variety BLc is the hypersurface

Var(Dc) = {(z, λ) ∈ (C×)d × C | Dc(z, λ) = 0}.

Thus, BLc is an affine variety. �

For a subset Z ⊆ Cn, consider the set I(Z) :=
{
f ∈ C[x1, . . . , xn] | f(z) = 0 for all z ∈ Z

}
of polynomials that vanish on Z. If Y ⊆ Z and f ∈ I(Z), then f(z) = 0 for all z ∈ Z. In

particular, f(z) = 0 for z ∈ Y . This means f ∈ I(Y ).

Let S ⊆ T ⊆ C[x1, . . . , xn]. If z ∈ Var(T ), then f(z) = 0 for all f ∈ T . In particular,

g(z) = 0 for all g ∈ S ⊆ T .
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Thus, we may consider Var and I as the inclusion-reversing maps

{
subsets of C[x1, . . . , xn]

} {
subsets of Cn

}
.

Var

I
(3.1)

We will refine this correspondence to give a dictionary between structures in algebra and geometry.

An ideal of C[x1, . . . , xn] is a subset I ⊆ C[x1, . . . , xn] that is closed under addition and

multiplication. Let Z ⊆ Cn. If f, g ∈ I(Z) and h ∈ C[x1, . . . , xn], then f(z) + h(z)g(z) =

0 + h(z) · 0 = 0 for all z ∈ Z. This implies f + gh ∈ I(Z) so the set I(Z) is an ideal of

C[x1, . . . , xn]. This is the ideal of Z.

Let S ⊆ C[x1, . . . , xn] be a subset of polynomials in C[x1, . . . , xn]. The ideal 〈S〉 is the

smallest ideal of C[x1, . . . , xn] containing S. Explicitly, 〈S〉 is the set of polynomials h1f1 + · · ·+

hmfm where hi ∈ C[x1, . . . , xn] and fi ∈ S for i = 1, . . . ,m.

Lemma 3.1.5. For any subset S ⊆ C[x1, . . . , xn], Var(S) = Var(〈S〉).

Proof. By definition, S ⊆ 〈S〉, so Var(〈S〉) ⊆ Var(S). Conversely, let g ∈ 〈S〉. Then there exist

h1, . . . , hm ∈ C[x1, . . . , xn] and f1, . . . , fm ∈ S such that g = h1f1+· · ·+hmfm. For z ∈ Var(S),

g(z) = h1(z)f1(z) + · · ·+ hm(z)fm(z) = h1 · 0 + · · ·+ hm · 0 = 0, so Var(S) ⊂ Var(〈S〉).

An affine variety is often defined by infinitely many polynomials. Hilbert’s Basis Theorem tells

us that we only need finitely many of them.

Theorem 3.1.6 (Hilbert’s Basis Theorem [23]). Every ideal I of C[x1, . . . , xn] is finitely generated.

Let X = Var(I) ⊆ Cn be an affine variety defined by an ideal I ⊆ C[x1, . . . , xn]. By

Hilbert’s Basis Theorem, there exist f1, . . . , fm ∈ I that generate I . Thus, I = 〈f1, . . . , fm〉 and

by Lemma 3.1.5, Var(I) = Var(f1, . . . , fm).

Lemma 3.1.7. Let Z ⊆ Cn. Then I(Var(I(Z))) = I(Z) and Var(I(Z)) is the smallest variety

containing Z.
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Proof. Let X = Var(I(Z)) be the affine variety defined by the ideal I(Z) and let f ∈ I(Z).

By definition of I(X), f(z) = 0 for all z ∈ X . Thus f ∈ I(X). As Z ⊆ X , it follows that

I(X) ⊆ I(Z). Thus, I(Z) = I(X).

Suppose that Y ⊆ Cn is an affine variety with Z ⊆ Y ⊆ X . Then I(X) ⊆ I(Y ) ⊆ I(Z) =

I(X) so I(X) = I(Y ). Then X = Y . Thus, X is the smallest variety containing Z.

Correspondence (3.1) refines to ideals of C[x1, . . . , xn] and subvarieties of Cn.

{
ideals of C[x1, . . . , xn]

} {
subvarieties of Cn

}
.

Var

I
(3.2)

This correspondence is not a bijection since the function Var is not surjective and the function I

is not injective. For example, I(Var(x2)) = 〈x〉. We refine Correspondence (3.2) by restricting

the domain of Var to radical ideals. An ideal I ⊆ C[x1, . . . , xn] is radical if whenever f r ∈ I for

some positive integer r, then f ∈ I . The radical of an ideal I is the set
√
I := {f ∈ C[x1, . . . , xn] |

fm ∈ I for some positive integer m}, and it is an ideal of C[x1, . . . , xn].

Lemma 3.1.8. If Z ⊆ Cn, then I(Z) is a radical ideal of C[x1, . . . , xn]. If I is an ideal of

C[x1, . . . , xn], then Var(I) = Var(
√
I).

Proof. Suppose z ∈ Z and f r ∈ I(Z) for some positive integer r. Then f r(z) = 0 if and only if

f(z) = 0. Thus, as z ∈ Z was arbitrary, f ∈ I(Z) so I(Z) is radical.

Since I ⊆
√
I , Var(

√
I) ⊆ Var(I). Let z ∈ Var(I) and let f ∈

√
I . Then f r ∈ I for some

positive integer r. This means f r(z) = 0 which implies f(z) = 0. Thus, z ∈ Var(
√
I).

To restrict Correspondence (3.2) to a bijection, we need Hilbert’s Nullstellensatz.

Theorem 3.1.9 (Hilbert’s Nullstellensatz [24]). Suppose I is an ideal of C[x1, . . . , xn]. Then

I(Var(I)) =
√
I .

A consequence of Hilbert’s Nullstellensatz is the inclusion reversing correspondence

{
radical ideals of C[x1, . . . , xn]

} {
subvarieties of Cn

}
.

Var

I
(3.3)
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between radical ideals of C[x1, . . . , xn] and subvarieties of Cn. The functions Var and I are

inverses of each other, making this correspondence into a bijection.

3.2 Topology

To discuss geometric properties of affine varieties in Cn, it is convenient to give Cn a topology.

A topology on Cn is a collection of subsets of Cn known as open sets, such that

(1) the empty set and Cn are open sets,

(2) an arbitrary union of open sets is open, and

(3) a finite intersection of open sets is open.

In this context, the set Cn with a topology is a topological space.

A topology on Cn may be specified by selecting a collection of subsets of Cn known as basic

open sets and defining this topology to be the smallest collection of subsets containing basic open

sets and that satisfy the properties (1) – (3) for open sets.

A closed set is the complement of an open set. Thus, a topology on Cn may also be described in

terms of closed sets. Both the empty set and Cn are closed sets because they are the complements

of one another. The intersection of an arbitrary collection of closed sets is closed, and the finite

union of two closed sets is closed.

Let I, J ⊆ C[x1, . . . , xn] be ideals. The sum of I and J is the set I + J := {f + g | f ∈

I, g ∈ I}, and it is the ideal 〈I, J〉 generated by I ∪ J . The product of I and J is the ideal I · J

:= 〈fg | f ∈ I, g ∈ J〉 ⊂ I ∩ J .

Lemma 3.2.1. [30, Remark 1.3 5,6] Let I, J ⊆ C[x1, . . . , xn] be ideals. Then

(a) Var(I + J) = Var(I) ∩ Var(J), and

(b) Var(I · J) = Var(I ∩ J) = Var(I) ∪ Var(J).

By Lemma 3.2.1, a finite union of affine varieties is an affine variety, and together with the

Hilbert Basis Theorem, the intersection of an arbitrary collection of affine varieties is an affine va-

riety. Thus, affine varieties in Cn are closed sets of a topology on Cn known as the Zariski topology

on Cn. An affine variety in Cn is a Zariski closed set. A Zariski open set is the complement of a
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Zariski closed set. By Lemma 3.1.7, if Z ⊆ Cn, the Zariski closure of Z is the smallest affine vari-

ety Z ⊆ Cn containing Z. The Zariski topology on a subvariety X of Cn is the subspace topology

inherited from the Zariski topology on Cn. A subset Z ⊆ X is Zariski dense in X if Z = X .

Affine subvarieties of Cn may also be equipped with the subspace topology inherited from the

Euclidean topology on Cn; thus, we may compare the Zariski topology on Cn with the Euclidean

topology on Cn. In the Euclidean topology on Cn, the basic open sets are given by a collection of

balls. For z = (z1, . . . , zn) ∈ Cn, a ball is a set Br(z) := {(x1, . . . , xn) ∈ Cn |
∑
|xi − zi|2 <

r} for r ≥ 0. On the other hand, in the Zariski topology, basic open sets are complements of

hypersurfaces. Thus, Zariski open sets (resp. Zariski closed sets) are open sets in the Euclidean

topology (resp. closed sets in the Euclidean topology), but the converse is not true.

An affine varietyX ⊆ Cn is reducible if it is the union of two proper affine varieties Y, Z ⊂ Cn.

If X is not reducible, then it is irreducible. An ideal I ⊆ C[x1, . . . , xn] is prime if fg ∈ I implies

f ∈ I or g ∈ I . The geometric notion of irreducibility of an affine variety X ⊆ Cn may be

interpreted as an algebraic property of I(X).

Theorem 3.2.2. [5, Proposition 5.3] An affine variety X ⊆ Cn is irreducible if and only if I(X)

is a prime ideal.

The dimension of an affine variety X ⊆ Cn is the largest integer m such that there exists a

strictly decreasing chain X = X0 ) X1 ) · · · ) Xm ) ∅ of irreducible subvarieties Xi of X . If

X has dimension m, then its codimension is n−m.

3.3 Regular Maps

A polynomial f ∈ C[x1, . . . , xn] defines a function f : Cn → C by evaluation at points in Cn.

If X ⊆ Cn is an affine variety, f ∈ C[x1, . . . , xn] restricts to a regular function X → C. The set of

regular functions onX has the structure of a ring given by multiplication of regular functions. This

is the coordinate ring of X and it is denoted by C[X]. The restriction of functions f : Cn → C

to regular functions on X defines a surjective ring homomorphism C[x1, . . . , xn] � C[X] and the

kernel of this homomorphism is the ideal I(X). It follows that C[X] ' C[x1, . . . , xn]/I(X).
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A C-algebra is a ring containing C as a subring, and it follows that it is equipped with the

structure of a complex vector space. Let X ⊆ Cn be an affine variety. The cooridnate ring

C[X] ' C[x1, . . . , xn]/I(X) is a C-algebra and it has the structure of a complex vector space

given by addition on C[X] and scalar multiplication by complex numbers.

Let ϕ1, . . . , ϕs ∈ C[X] be regular functions on an affine variety X ⊆ Cn, and let Y ⊆ Cs be

an affine variety. A function ϕ : X → Y such that x 7→ (ϕ1(x), . . . , ϕs(x)) is a regular map. A

regular map ϕ is an isomorphism if it is bijective and its inverse is a regular map. In this case, the

affine varieties X and Y are isomorphic. A regular map ϕ : X → Y induces a homomorphism

ϕ∗ : C[Y ]→ C[X] of C-algebras given by f 7→ f ◦ ϕ.

3.4 Projective Varieties

The set of one-dimensional subspaces of Cn+1 is (complex) projective n-space and is denoted

by Pn. A point ` ∈ Pn may be represented by the coordinates [x0, . . . , xn] of a nonzero vector in

the subpace ` ⊂ Cn+1. If r ∈ C×, then r · [x0, . . . , xn] = [rx0, . . . , rxn]. This gives an equivalence

relation ∼ on the set Cn+1 \ {0} of nonzero vectors in Cn+1 (where 0 is the zero vector in Cn+1)

and Pn = (Cn+1 \ {0})/ ∼. The coordinates [x0, . . . , xn] are homogeneous coordinates.

For each i = 0, . . . , n, let Ui be the set of points ` ∈ Pn whose i-th coordinate is nonzero. Di-

vide by this i-th coordinate to obtain a representative of ` of the form [x0, . . . , xi−1, 1, xi+1, . . . , xn].

Thus Pn = U0 ∪ · · · ∪ Un. The sets Ui are coordinate charts for Pn as a manifold.

Let f ∈ C[x0, . . . , xn] be a polynomial of degree d and denote by fk the sum of the terms of

f of degree k. The polynomial fk is the k-th homogeneous component of f . If [x0, . . . , xn] and

[rx0, . . . , rxn] are representatives of a point ` ∈ Pn, then

f(rx0, . . . , rxn) = rdfd(x0, . . . , xn) + · · ·+ rf1(x0, . . . , xn) + f0(x0, . . . , xn).

Observe that f(`) is a well-defined number only if f is constant. A polynomial f is homoge-

neous of degree d if f = fd. Homogeneous polynomials are also known as forms. The set of
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homogeneous polynomials of degree d is denoted by C[x0, . . . , xn]d. The set

Var(f1, . . . , fs) :=
{
` ∈ Pn | fi is homogeneous and fi(`) = 0 for i = 1, . . . , s

}
defines a projective variety. An ideal I of C[x0, . . . , xn] is homogeneous if f ∈ I implies that all

the homogeneous components of f are in I . It follows that projective varieties are given by homo-

geneous ideals. If Z ⊆ Pn is a subset of projective space, the set I(Z) := {f ∈ C[x0, . . . , xn] |

f(`) = 0 for all ` ∈ Z} is the ideal of Z. This is a homogeneous ideal.
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4. POLYTOPES AND TORIC VARIETIES

In Chapter 5 we study the geometry of the Newton polytope of the dispersion polynomial

of a periodic graph operator and give criteria when the dispersion polynomial is irreducible. To

study the asymptotics of the complex Bloch variety of a periodic graph operator, in Chapter 6 we

compactify this Bloch variety in the toric variety associated to the fan of its Newton polytope. Here,

we outline the background on polytopes and toric varieties necessary for our study of complex

Bloch varieties. For more on polytopes, see [11,37], and for a thorough treatment of toric varieties,

see any of [6, 10, 11, 18, 34].

4.1 Polytopes

Let A ⊂ Rn be a finite set. The sum
∑
a∈A

λaa, where λa ≥ 0 and
∑
a∈A

λa = 1, is a convex

combination of points a ∈ A. The convex hull of A is the set

conv(A) :=

{∑
a∈A

λaa |
∑
a∈A

λa = 1 and λa ≥ 0 for all a ∈ A

}

of all convex combinations of points a ∈ A. The convex hull of a finite set of points is a polytope.

If A ⊂ Zn, then conv(A) is a lattice polytope.

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Figure 4.1: The two-dimensional cross polytope.

28



Example 4.1.1. The polytope P = conv{(±1, 0), (0,±1)} ⊂ R2 depicted in Figure 4.1 is the

two-dimensional cross polytope. �

Let V be a linear subspace of Rn and let x ∈ Rn. A translate x+ V := {x+ v ∈ Rn | v ∈ V }

of V by x is an affine subspace. The dimension of x+V is the dimension of V . The affine span of

a set X ⊂ Rn is the intersection Aff(X) of all affine subspaces containing it. The dimension of a

polytope is the dimension of its affine span.

Proposition 4.1.2. [37, Theorem 2.15] A polytope is closed and bounded.

Let w ∈ Rn and let P ⊂ Rn be a polytope. Since P is closed and bounded, the dot product

c 7→ w · c, as a function on Rn restricted to P , has a minimum value hP (w) := min{w · c | c ∈ P}.

The set Pw := {p ∈ P | w · p = hP (w)} is the face of P exposed by w and the vector w is an

inner normal of Pw. A face of P is also a polytope since Pw = conv
{
a ∈ A | w · a = hP (w)

}
. A

face of P of codimension n is a vertex, a face of codimension n− 1 is an edge, and a face of P of

codimension 1 is a facet.

The Minkowski sum of two polytopes P,Q ⊂ Rn,

P +Q := {p+ q ∈ Rn | p ∈ P, q ∈ Q},

is a polytope. If λ > 0, the dilation λP := {λp ∈ Rn | p ∈ P} is also a polytope.

A polytope P ⊂ Rn is indecomposable if whenever there exist polytopes Q,R ⊂ Rn with

P = Q + R, then Q or R is a point in Zn. Otherwise, P is decomposable. A lattice polytope

Q is homothetic to P if there exist a point a ∈ Zn and a positive rational number r such that

P = a + rQ. A lattice polytope P is only homothetically decomposable if whenever there exist

polytopes Q,R ⊂ Rn with P = Q+R, then Q and R are homothetic to P .

4.2 Newton Polytopes

A Laurent monomial in the variables z1, . . . , zn is the product za := za1
1 · · · zann , where a =

(a1, . . . , an) ∈ Zn. A Laurent polynomial f in the variables z1, . . . , zn is a linear combination of
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Laurent monomials

f =
∑
a∈Zn

caz
a,

where ca ∈ C is a coefficient and all but finitely many coefficients are 0. The support of the Laurent

polynomial f is A(f) := {a ∈ Zn | ca 6= 0}. The product caza of a coefficient ca and a monomial

za is a term.

The set of Laurent polynomials in the variables z1, . . . , zn is denoted by C[z±1 , . . . , z
±
n ], and it

is a ring under addition and multiplication. A Laurent polynomial f ∈ C[z±1 , . . . , z
±
n ] is irreducible

if it is not a term, and whenever there exist polynomials g, h ∈ C[z±1 , . . . , z
±
n ] with f = gh, either

g or h is a term.

Let f ∈ C[z±1 , . . . , z
±
n ] be a Laurent polynomial with support A(f) ⊂ Zn. The Newton poly-

tope of f is the convex hull Newt f := conv(A(f)) ⊂ Rn of its support. Since the support of f

lies in Zn, Newt f is a lattice polytope. For a face F of the polytope Newt f , the facial polynomial

fF of f is the sum of the terms of f whose exponent vectors lie in A(f) ∩ F . A monomial whose

exponent vector is a vertex of Newt f is an extreme monomial of f .

Given two Laurent polynomials f and g, the Newton polytope of their product fg is the

Minkowski sum Newt fg = Newt f + Newt g. A Laurent polynomial f ∈ C[z±1 , . . . , z
±
n ] is

only homothetically reducible if it is not a term and whenever there exist g, h ∈ C[z±1 , . . . , z
±
n ]

with f = gh, then Newt g and Newth are homothetic to Newt f .

Example 4.2.1. Let H be a hyperplane of Rn, let A ⊂ H be a finite set, and let v be a point in

Rn rH . The convex hull of A∪ {v} is a pyramid with apex v. A face of conv(A∪ {v}) is apical

if it contains the apex, v. Pyramids are only homothetically decomposable [19].

A Laurent polynomial in C[x±, y±, z±] of the form g(x, y, z) = za + f(x, y), where a 6= 0 and

f ∈ C[x±, y±] r {0}, is only homothetically reducible. If a = 1, Newt g is indecomposable. �

4.3 Toric Varieties from Monomial Maps

Recall from Example 3.1.3 that the algebraic torus (C×)n is the group of invertible diago-

nal n × n matrices over C. The free abelian group Zn of rank n is isomorphic to the group
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Homg(C×, (C×)n) of cocharacters from C× to (C×)n. The group Zn is also isomorphic to the

group Homg((C×)n,C×) of characters. The coordinate ring of (C×)n is the ring C[x±1 , . . . , x
±
n ] of

Laurent polynomials.

Let A ⊂ Zn be a finite set of column vectors of an integer matrix with n rows. Writing CA for

the complex vector space of functions from A to C with coordinates (za | a ∈ A), we use the set

A to embed (C×)n into CA through the map

ϕA : (C×)n −→ (C×)A ⊂ CA

x 7−→ (xa | a ∈ A).

The Zariski closure of the image ϕA((C×)n) defines an affine toric variety XA. The ideal of XA,

denoted by IA, is the kernel of the map

ϕ∗A : C[za | a ∈ A] −→ C[x±1 , . . . , x
±
n ]

za 7−→ xa.

(4.1)

The exponent of a monomial zu ∈ C[za | a ∈ A] is u = (ua | a ∈ A) ∈ NA. For u ∈ NA, let Au

:=
∑
a∈A

aua. Note that kerϕ∗A contains the set of binomials {zu − zv | Au = Av}.

Theorem 4.3.1. [34, Theorem 1.2] The ideal IA is a prime ideal, and as a complex vector space, it

is spanned by the set {zu − zv | Au = Av}.

Proof. The image of the map ϕ∗A is the subalgebra in C[x±] generated by the set {xa | a ∈ A}.

Since C[x±] is an integral domain, so is the image of ϕ∗A. Hence, the ideal IA = kerϕ∗A is prime.

Let ≺ be a term order on C[za | a ∈ A]. For f ∈ IA, write

f = cuz
u +

∑
v≺u

cvz
v,

where cu 6= 0, so that in≺(f) = cuz
u is the initial term of f . It follows that 0 = ϕ∗A(f) =

cux
Au +

∑
v≺u

cvx
Av. Then there exists v ≺ u such that Au = Av (otherwise cuxAu is not canceled
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in ϕ∗A(f) and ϕ∗A(f) 6= 0).

Suppose the leading term of f is ≺-minimal in the initial ideal in≺(IA) := {in≺(g) | g ∈ IA}.

Set f := f − cu(zu − zv) and observe that ϕ∗A(f) = 0 and in≺(f) ≺ in(f). Since the leading term

of f is ≺-minimal in in≺(IA), it follows that f = 0 and f is a scalar multiple of a binomial of the

form

zu − zv, Au = Av. (4.2)

where u, v ∈ NA.

Suppose now that in≺(f) is not ≺-minimal in in≺(IA) and every polynomial in in≺(IA), all of

whose terms are ≺-less than in≺(f), is a linear combination of binomials of the form (4.2). Then

f is a linear combination of binomials of the form (4.2), which implies that f is as well.

Recall that a monoid is a nonempty set with an associative binary operation and an identity

element (see Section 2.2). Given a finite set A ⊂ Zn, NA is the submonoid of Zn generated by A.

The monoid algebra of A ⊂ Zn is the set C[NA] of complex-linear combinations of elements of

NA. We identify C[NA] with the set of Laurent polynomials whose exponents are from NA.

Corollary 4.3.2. [34, Corollary 1.3] Let A ⊂ Zn be a finite set. The coordinate ring of the affine

toric variety XA is C[NA].

By the proof of Theorem 4.3.1, the coordinate ring of XA is C[NA] ' C[xa | a ∈ A]. It

follows by the standard algebra-geometry dictionary that XA = specC[NA].

4.4 Toric Varieties from Fans

We follow [8, 10] to construct an abstract toric variety by gluing affine toric varieties along

common open subsets. These affine toric varieties and the gluing are recorded by the data of a fan.

Let N be a finitely generated free abelian group of rank n and let M := Hom(N,Z) be its dual

group. Let σ be a finitely generated submonoid of N . The polar of σ,

σ∨ := {u ∈M | u(v) ≥ 0 for all v ∈ σ},
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is a finitely generated submonoid of M = Hom(N,Z). A cone σ is a finitely generated submonoid

that is saturated, which means (σ∨)∨ = σ. The dimension of a cone is the rank of the subgroup it

generates. A one-dimensional cone is a ray.

Example 4.4.1. If A = {(1, 1), (1, 0), (1,−1)} ⊂ Z2, the monoids NA and ZA are cones. �

A face τ of a cone σ is a submonoid τ = {v ∈ σ | u(v) = 0}, for some u ∈ σ∨. A face τ of σ

such that τ 6= σ is a proper face.

Lemma 4.4.2. [6, Lemma 1.2.6] Let σ be a cone. Then

(a) every face of σ is a cone,

(b) the intersection of any two faces of σ is a face of σ, and

(c) a face of a face of σ is a face of σ.

Let σ be a cone in N . As in Section 4.3, the monoid algebra of σ∨ ⊆ M is the set C[σ∨] of

complex-linear combinations of elements of σ∨.

Example 4.4.3. The Laurent polynomial ring C[Zn] = C[x±1 , . . . , x
±
n ] is a monoid algebra. �

Given a cone σ in N , we associate to σ the affine variety Vσ := specC[σ∨]. If τ is a face of σ,

then σ∨ ⊂ τ∨ induces the inclusion Vτ ⊂ Vσ as C[σ∨] and C[τ∨] have the same function field and

C[σ∨] ⊂ C[τ∨].

Let 0 be the identity of N . A cone σ is pointed if {0} is a face of σ, in which case σ∨ generates

M . A fan Σ in N is a finite collection of pointed cones in N where

(a) any face of a cone in Σ is a cone in Σ, and

(b) the intersection of any two cones in Σ is also a common face of each.

The support of a fan Σ is the set-theoretic union |Σ| :=
⋃
σ∈Σ

σ ⊆ N . A fan Σ is complete if |Σ| = N .

Let Σ be a fan in N . We obtain an algebraic variety XΣ from the collection {Vσ | σ ∈ Σ} by

gluing along the inclusions induced by Vτ ⊂ Vσ whenever τ, σ are cones in Σ and τ is a face of σ.

Since a pointed cone contains {0} as a face, the algebraic torus V0 = specC[M ] is contained

in Vσ for every σ ∈ Σ and the gluing is torus-equivariant. It follows that V0 acts on the variety XΣ,

showing XΣ is a toric variety. The variety XΣ is the toric variety associated to the fan Σ.
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Let σ be a cone in N . The lineality space of σ∨ is the group Mσ := σ∨ ∩ (−σ∨) ⊆ M . The

affine variety Vσ has a distinguished point xσ which corresponds to the maximal ideal of C[σ∨] that

is the kernel of the map C[σ∨]→ C, where

σ∨ 3 u 7−→


1 u ∈Mσ

0 otherwise.

The orbit Oσ of the point xσ is a torus orbit in Vσ.

Let MR := M ⊗Z R. Let P be a polytope in MR. For v, w ∈ N , v ∼ w if and only if

Pv = Pw, which means v and w expose the same face of P . Let F be a face of P . The set σF

:= {u ∈ N | F ⊂ Pu} is a pointed cone in N . The collection ΣP := {σF ⊂ N | F is a face of P}

is the (inner normal) fan to the polytope P . Each cone in ΣP corresponds to a unique face of P

as follows. Given a face F of P , the relative interior σ◦F of the cone σF ∈ ΣP is the set-theoretic

difference of σF with the union of the cones σG ∈ ΣP for faces G of P that contain F . The face F

is the face of P exposed by any w ∈ σ◦F . If F is a face of P , the lineality space MF := MσF is the

linear span a− b ∈M , where a, b ∈ F ∩M (see [34, Section 3.1]).

F

v = (−1, 0)

(0,−1)

(0, 0)

(1, 1)

(1, 0)

(1,−1)

Figure 4.2: The two-dimensional cross polytope and and its fan.

Example 4.4.4. Figure 4.2 shows the two-dimensional cross polytope and its fan in Z2. The cone
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corresponding to the vertex v = (−1, 0) is the cone generated by (1, 1), (1, 0), and (1,−1). The

cone corresponding to the edge F of P is the ray generated by (1, 1). �

Since each element in N exposes a face of P , the fan ΣP is complete. The next theorem shows

us that the toric variety XΣP associated to the fan ΣP is compact.

Theorem 4.4.5. [6, Theorem 3.4.1] Let Σ be a fan in N and let XΣ be its associated toric variety,

Then XΣ is compact if and only if Σ is complete.

4.5 Sheaves on Toric Varieties from Fans

In Chapter 6 we construct a particular class of sheaves on a toric variety constructed from a

fan. We do not need sheaves in complete generality. This section is based on [11, VII.1].

Let R be a (commutative) ring with 1. A (left) R-module is an abelian groupM := (M,+)

together with a function

R×M→M, (r, a) 7→ ra

such that for all r, s ∈ R and a, b ∈M,

(i) r(a+ b) = ra+ rb,

(ii) (r + s)a = ra+ sa,

(iii) r(sa) = (rs)a, and

(iv) IdR a = a.

If R is a field, then an R-module is a vector space.

Let R′ be a ring that contains R as a subring. Let M be an R-module and let M′ be an R′-

module. An R-module homomorphism ϕ :M →M′ is a function such that for all r, s ∈ R and

a, b ∈ M, ϕ(ra + sb) = rϕ(a) + sϕ(b). If R = R′ and ϕ is bijective, then ϕ is an R-module

isomorphism.

Example 4.5.1. Every abelian group G is a Z-module. �

Let X be a toric variety. A sheaf of rational functions F on X consists of the following data:

(a) for each (Zariski) open subset U ⊆ X , F (U) is a ring of rational functions on U ;
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(b) for every inclusion V ⊆ U of open subsets of X , ρV,U is the inclusion F (U) ↪→ F (V );

such that F (∅) = 0, ρU,U = IdF (U), and for any inclusion W ⊆ V ⊆ U , ρW,U = ρW,V ◦ ρV,U .

Example 4.5.2. Let Σ be the (inner normal) fan of a polytope and let XΣ be the toric variety

associated to Σ. For each open subset U ⊆ XΣ, let O(U) be the ring of regular functions on U .

For each open subset V ⊆ U and f ∈ O(U), the restriction f |V of f to V is a regular function

on V . Moreover, since a rational function which is regular locally is regular, it follows that O is a

sheaf of rational functions on XΣ. This sheaf is the structure sheaf of XΣ. �

Proposition 4.5.3. [11, Theorem 1.8] Let Σ be a fan in a finitely generated free abelian group N ,

let M = Hom(N,Z), and let XΣ be the associated toric variety of the fan Σ.

(a) If σ ∈ Σ, then O(Vσ) = C[σ∨]. In particular, O(V0) = C[M ]

(b) If Σ is complete, then O(XΣ) = C.

Let Σ be a fan and let XΣ be its associated toric variety. Let F be a sheaf of rational functions

on XΣ such that for each Vσ, the set F (Vσ) is an O(Vσ)-module of rational functions on Vσ. Then

F is a sheaf of O-modules on XΣ. Let F be a sheaf of O-modules on XΣ. For an open subset

U ⊆ XΣ, an element in F (U) is a section of F over U . A global section of F is an element of

the O(XΣ)-module F (XΣ).
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5. IRREDUCIBILITY∗

We study the (ir)reducibility of Bloch varieties upon a change of their period lattice. This line

of work dates back to the 1980s, with a focus on the discrete periodic Schrödinger operator on

`2(Zd). For this operator, irreducibility of the Bloch variety was proven in [3] for d = 2.

We use discrete geometry to study when the irreducibility of the dispersion polynomial of a pe-

riodic graph operator is preserved for a potential that is periodic with respect to the sublattice QZ

(see Section 2.2). For a QZ-periodic potential, we show that if enough of the facial polynomials of

the corresponding dispersion polynomial DQ are also facial polynomials of a Zd-periodic potential

and the corresponding facial polynomials of D are irreducible, then DQ factors “only homothet-

ically” (Corollary 5.3.12). If this condition is met, then DQ is irreducible if it has an irreducible

facial polynomial (Corollary 5.2.5).

There is an overlap between our methods and those in [16], which were inspired by the

work [28]. We translate these works to the language of discrete geometry. This allows us to use

the theory of indecomposability for lattice polytopes in the study of irreducibility of the Bloch va-

rieties. This enables us to apply our results to study the irreducibility of a larger class of dispersion

polynomials; for example, those that arise from many-vertex models like the hexagonal lattice, as

opposed to the single-vertex models such as the square lattice, that are the subjects of [16].

Section 5.1 introduces the background on changing the period lattice of the potential of a

periodic graph operator. Section 5.2 uses classical results on the decomposability of polytopes to

obtain analogous results for a class of Laurent polynomials. For a Zd-periodic potential, Section 5.3

discusses sufficient conditions when the irreducibility of the dispersion polynomial is preserved

after changing the period lattice which will enable us to discuss irreducibility of the dispersion

polynomial for more general potentials. Section 5.4 provides various applications of these results.

∗Adapted with permission from “Irreducibility of the Dispersion Polynomial for Periodic Graphs” by Matthew
Faust and Jordy Lopez Garcia, 2025. SIAM Journal on Applied Algebra and Geometry, Volume 9, pages 83-107,
Copyright 2025 by the Society of Industrial and Applied Mathematics. This chapter includes figures that are reprinted
with permission from the Society of Industrial and Applied Mathematics.
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This chapter is based on published work with Matthew Faust in [12].

5.1 Changing the Period Lattice of the Potential

Let Γ = (V , E) be a Zd-periodic graph with fundamental domain W , where m := |W |, and let

L be a periodic graph operator on `2(Γ). Fix Q := (q1, . . . , qd) ∈ Nd and let |Q| :=
d∏
i=1

qi. We

wish to study the dispersion polynomial D of L with labeling (VQ, E), where E : E → C is a

Zd-periodic edge labeling and VQ : V → C is a QZd-periodic potential, rather than a Zd-periodic

potential. We denote operator L with labeling (VQ, E) by LQ.

As QZ is a free subgroup of Zd of rank m, Γ is also a QZ-periodic graph. Thus, WQ is a

fundamental domain for the action of QZ on V (see Section 2.2). The Floquet matrix of LQ with

respect to the QZ-periodic graph Γ with fundamental domain WQ is denoted by LQ(z). Since

|WQ| = |Q|m, the matrix LQ(z) is a |Q|m×|Q|m matrix of Laurent polynomials.

We discuss an alternative representative of LQ(z) that comes from a change of basis and after

a change of variables. Consider the surjective group homomorphism

φ : (C×)d −→ (C×)d

(z1, . . . , zd) 7−→ (zq11 , . . . , z
qd
d ),

(5.1)

with kernel group UQ :=
d∏
i=1

Uqi , where Uqi is the multiplicative group of qi-th roots of unity.

Fix z ∈ Td and u ∈ W . For each ρ ∈ UQ, define the function eρ,u : V → C such that for v ∈ V ,

eρ,u(v) :=


(ρz)a :=

d∏
i=1

(ρizi)
ai if v = a+ u for a = (a1, . . . , ad) ∈ Zd, and

0 otherwise.

Observe that for a ∈ Zd and v ∈ V with v 6= u,

eρ,u(a+ u) = (ρz)a = (ρz)aeρ,u(u), and

eρ,u(a+ v) = 0 = (ρz)aeρ,u(v).

(5.2)

38



By [21, Lemma 2.2], the set of functions {eρ,u | ρ ∈ UQ, u ∈ W} forms a basis for functions

ψ : V → C satisfying

ψ(Qi + v) = zqii ψ(v), for i = 1, . . . , d.

Here, Qi := qiεi, where εi is the i-th standard basis vector of Rd. The set {eρ,u | ρ ∈ UQ, u ∈ W}

also forms a basis for Floquet functions with Floquet multiplier zQ with respect to the QZ-action

(see [12, Remark 1.2]). Thus, we obtain a new matrix representation for LQ(zq11 , . . . , z
qd
d ) in the

basis {eρ,u | ρ ∈ UQ, u ∈ W}. For each ρ ∈ UQ, the weighted discrete Laplacian ∆E in this basis

is defined by

(∆Eeρ,u)(u) := −
∑

(u,a+v)∈E

E(u,a+v)(ρz)aeρ,u(v),

where u, v ∈ W . The Floquet matrix of ∆E in the basis {eρ,u | ρ ∈ UQ, u ∈ W} is a block-

diagonal matrix given by |Q|×|Q| blocks, indexed by UQ × UQ, of m×m matrices, indexed by

W ×W : (
∆̂E(z)

)
ρ,ρ′

:= δρ,ρ′ ·∆E(ρz),

where the submatrix ∆E(ρz) represents the discrete Laplacian ∆E with Floquet multiplier ρz (with

respect to the Zd-action). The Floquet matrix of ∆E in the basis {eρ,u | ρ ∈ UQ, u ∈ W} is denoted

by ∆̂E(z).

To discuss the potential V in this new basis, we will take a discrete Fourier transform. For each

µ ∈ UQ and a+ v ∈ WQ, the discrete Fourier transform of the potential V is

(V eµ,u)(a+ v) = V (a+ v)eµ,u(a+ v) =
∑
ρ∈UQ

V̂ρ,µ(v)eρ,u(a+ v) =
∑
ρ∈UQ

V̂ρ,µ(v)ρaeρ,u(v),

where V̂ρ,µ(v) is the Fourier coefficient of V on the orbit of v ∈ W (see also [17, Equation 4.5]).

To obtain a matrix multiplication operator in this basis, we solve for the coefficients and get

V̂ρ,µ(v)eρ,u(v) =
eµ,u(v)

|Q|
∑

a+v∈WQ

V (a+ v)(µρ−1)a.
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Let V̂ be the matrix representation of V in the basis {eρ,u | ρ ∈ UQ, u ∈ W}; that is, V̂ acts on the

basis function eρ,u(v) by

(
V̂ eρ,u

)
(v) =

∑
µ∈UQ

V̂ρ,µ(v)eρ,u(v) =
∑
µ∈UQ

eµ,u(v)

|Q|
∑

a+v∈WQ

V (a+ v)(µρ−1)a
(

= V eρ,u(v)
)
.

This is a |Q| × |Q| block matrix with m×m entries, indexed the same as ∆̂E(z). Each V̂ρ,µ is an

m×m diagonal matrix such that (V̂ρ,µ)u,u = V̂ρ,µ(u).

Remark 5.1.1. If V is also Zd-periodic, then

V̂ρ,µ(v)eρ,u(v) =
1

|Q|
∑

a+v∈WQ

V (a+ v)eµ,u(v)(µρ−1)a

=
1

|Q|
∑

a+v∈WQ

V (v)eµ,u(v)(µρ−1)a

=
V (v)eµ,u(v)

|Q|
∑

a+v∈WQ

(µρ−1)a.

Thus, V̂ρ,µ(v) = V (v) when ρ = µ and is 0 otherwise. That is, V̂ is a diagonal matrix. �

The m|Q| ×m|Q| matrix LQ(zQ) with respect to the basis {eρ,u | ρ ∈ UQ, u ∈ W} is

L̂Q(z) = V̂ + ∆̂E(z).

Let DQ(z, λ) = det(LQ(z)− λI) and D̂Q(z, λ) = det(L̂Q(z)− λI). As L̂Q(z, λ) is LQ(zQ) after

a change of basis,

DQ(zQ, λ) = det(LQ(zQ)− λI) = det(L̂Q(z)− λI) = D̂Q(z, λ).

Example 5.1.2. Let us continue Example 2.4.3. When we view the hexagonal lattice as Z2-periodic,
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as in the case of Figure 2.1, with a Z2-periodic potential V , we get the Floquet matrix

L(x, y) =

 V (u) −α−βx−1−γy−1

−α−βx−γy V (v)

 .

Let Q = (2, 1) and let VQ be a QZ-periodic potential, then LQ(x, y) is given by the matrix



VQ(u) −α−γy−1 0 −βx−1

−α−γy VQ(v) −β 0

0 −β VQ((1, 0) + u) −α−γy−1

−βx 0 −α−γy VQ((1, 0) + v)


.

If V satisfies V (u) =
VQ(u)+VQ((1,0)+u)

2
and V (v) =

VQ(v)+VQ((1,0)+v)

2
, then L̂Q(x, y) is a 2× 2 block

matrix with each entry a 2× 2 matrix. Explicitly,

L̂Q(x, y) =

 L(x, y) (V̂Q)1,−1

(V̂Q)−1,1 L(−x, y)

 , where

(V̂Q)1,−1 = (V̂Q)−1,1 =

VQ(u)−VQ((1,0)+u)

2
0

0
VQ(v)−VQ((1,0)+v)

2

 .

�

5.2 Only Homothetic Polynomials

Only homothetic decomposability was considered in [29,32], where it is shown that if enough

faces of a polytope are only homothetically decomposable, the polytope is only homothetically

decomposable. We prove an similar result for only homothetically reducible Laurent polynomials.

If f, g, and h are Laurent polynomials such that f = gh and F is a face of Newt f , we write

fF = gFhF as the factorization of the facial polynomial fF into gF and hF . Recall that there exists

an inner normal w ∈ Rd that exposes F (and is such that fF = fw) and gF = gw and hF = hw.
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Remark 5.2.1. If f is only homothetically reducible, then whenever f = gh, there exists r, t ∈ Q

such that rNewt f = Newt g and tNewt f = Newth. By the definition of only homothetic

irreducibility, there exists ag and ah in Zd so that ag + rNewt f = Newt g and ah + tNewt f =

Newth. It follows that (ag + rNewt f) + (ah + tNewt f) = Newt f and ag +ah = 0. Thus, there

exists g′ = zahg and h′ = zagh such that rNewt f = Newt g′ and tNewt f = Newth′. �

Lemma 5.2.2. Let f, g, and h be Laurent polynomials and suppose that f = gh. Let F1 and F2 be

faces of Newt f with dimF1 ∩ F2 ≥ 1 whose corresponding facial polynomials, fF1 and fF2 , are

only homothetically reducible. If Newt gF1 = rNewt fF1 and NewthF1 = tNewt fF1 for some

pair r, t ∈ Q, then Newt gF2 = rNewt fF2 and NewthF2 = tNewt fF2 .

Proof. Since f = gh, fF1 = gF1hF1 . As fF1 is only homothetic reducible we have that rNewt fF1 =

Newt gF1 and tNewt fF1 = NewthF1 for some r, t ∈ Q. Let F ′ = F1∩F2. As F ′ ⊂ F1, it follows

that Newt gF ′ = rNewt fF ′ and NewthF ′ = tNewt fF ′ . The polynomial fF2 is only homotheti-

cally reducible and must agree with its restriction to F ′; it follows that rNewt fF2 = Newt gF2 and

tNewt fF2 = NewthF2 .

A strong chain of faces of a polytope P is a sequence of faces F1, . . . , Fn of P of length n such

that for each i, dimFi ∩ Fi+1 ≥ 1.

Example 5.2.3. Adjacent triangular facets of a 3-dimensional pyramid share an edge, and thus give

a strong chain of faces of length 2. �

Theorem 5.2.4. Let f, g, and h be Laurent polynomials such that f = gh. If for each pair (a, b)

of distinct vertices of Newt f there is a strong chain of faces F1, . . . , Fn such that a ∈ F1, b ∈ Fn,

and for each Fi, the corresponding facial polynomial fFi is only homothetically reducible, then f

is only homothetically reducible.

Proof. By Lemma 5.2.2, there exist a pair of rational numbers r, t ∈ Q such that rNewt fFi =

Newt gFi and tNewt fFi = NewthFi for all i = 1, . . . , n. As a ∈ F1 and b ∈ Fn, rNewt fa =

Newt ga, tNewt fa = Newtha, rNewt fb = Newt gb, and tNewt fb = Newthb. This is the
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case for all vertex pairs (a, b) of Newt f . In particular, we may fix a and let b vary over the other

vertices. As any vertex of Newt f must come from the Minkowski sum of a pair of vertices u, v

where u ∈ Newt g and v ∈ Newth, and any vertex u of Newt g or v of Newthmust be a summand

for some vertex of Newt f , it follows that rNewt f = Newt g and tNewt f = Newth.

Corollary 5.2.5. Suppose that f is only homothetically reducible. If there is a face F of Newt f

of dimF ≥ 1 such that fF is irreducible, then f is irreducible.

Proof. Suppose that f is only homothetically reducible. Let F be a face of Newt f such that f |F is

irreducible. Suppose g, h are Laurent polynomials such that f = gh. As f is only homothetically

reducible, there exists r, s ∈ Q such that rNewt f = Newt g and tNewt f = Newth. Thus, for

any face F ′ of Newt f , rNewt fF ′ = Newt gF ′ and tNewt fF ′ = NewthF ′ . Notice that fF is

irreducible and therefore, one of g|F or hF is a monomial. As one of hF or gF must be a monomial

(which by Remark 5.2.1 we assume to be the constant monomial), either t or r is zero.

5.3 Expanded Dispersion Polynomials

Let Γ be a Zd-periodic graph with fundamental domain W , let L(z) be the Floquet matrix of

a periodic graph operator L with a Zd-periodic labeling (V,E) (that is, both E and V are Zd-

periodic), and let D(z, λ) := det(L(z)− λI) be its dispersion polynomial.

Fix Q = (q1, . . . , qd) ∈ Nd, and consider Γ as a QZ-periodic graph with fundamental domain

WQ. For a QZ-periodic potential VQ, let LQ(z) be the Floquet matrix of LQ acting on the QZ-

periodic graph Γ with fundamental domain WQ and with the labeling (VQ, E). Let L̂Q(z) be the

matrix obtained from the Floquet matrix LQ(zQ) after the change of basis (5.2), and let V̂ be the

matrix representing VQ after the change of basis in Section 5.1.

Recall that DQ(z, λ) = det(LQ(z) − λI), D̂Q(z, λ) = det(L̂Q(z) − λI), DQ(zQ, λ) =

D̂Q(z, λ), |Q| :=
d∏
i=1

qi, and UQ :=
d∏
i=1

Uqi , where Uqi is the multiplicative group of qi-th roots

of unity. We will write D,DQ, and D̂Q in place of D(z, λ), DQ(z, λ) , and D̂Q(z, λ) respectively.

We seek conditions on D and Q which imply that if VQ = V then DQ is irreducible. In this

case, the QZ-periodic potential VQ is also Zd-periodic.
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Suppose that VQ = V . By Remark 5.1.1, V̂ is given by a diagonal matrix when the potential

VQ is Zd-periodic. It follows that D̂Q(z, λ) may be expressed in terms of D as

D̂Q(z, λ) := det(L̂Q(z)− λI) =
∏
µ∈UQ

det(L(µz)− λI) =
∏
µ∈UQ

D(µz, λ). (5.3)

Due to this expression, Newt D̂Q = |Q|NewtD. As DQ(zQ, λ) = D̂Q(z, λ), NewtDQ is the

polytope obtained after multiplying the i-th coordinate of each point of NewtD by |Q|
qi

. That

is, (a1, . . . , ad, ad+1) is a vertex of NewtD if and only if
( |Q|a1

q1
, . . . , |Q|ad

qd
, |Q|ad+1

)
is a vertex

of NewtDQ. Therefore, w = (w1, . . . , wd+1) ∈ Zd exposes a face of NewtD if and only if

w′ = (q1w1, . . . , qdwd, wd+1) exposes a face of NewtDQ. We call NewtDQ a contracted Q-

dilation of NewtD (a contracted Q-dilation is a
( |Q|
q1
, . . . , |Q|

qd
, |Q|

)
-dilation). We will often write

(DQ)w for (DQ)w′; similarly, if F is the face of NewtDQ exposed by w′, we will write DF for the

corresponding facial polynomial of D and vice versa.

Lemma 5.3.1. Let VQ be the Zd-periodic potential V and suppose that D is only homothetically

reducible. Then DQ is only homothetically reducible.

Proof. Suppose D is only homothetically reducible and DQ = g(z, λ)h(z, λ), where g(z, λ) is

not a monomial. As DQ(zQ, λ) = D̂Q(z, λ), it suffices to show Newt g(zQ, λ) is homothetic to

Newt D̂Q. By Remark 5.2.1, as D is only homothetically reducible, if f1, . . . , fl are its irreducible

factors, then there exist r1, . . . , rl ∈ Q such that Newt fi = ri NewtD. As VQ is Zd-periodic, it

follows that Newt fi = ri
|Q| Newt D̂Q.

By Equation (5.3), g(zQ, λ)h(zQ, λ) = D̂Q =
∏
µ∈UQ

D(µz, λ). Thus there exists an integer

s with 0 < s ≤ l|Q| such that g(zQ, λ) =
s∏
i=1

κi(z, λ), where each κi(z, λ) = fj(µz, λ) for

some j ∈ [l] and µ ∈ UQ (noting that each fj(µz, λ) is an irreducible factor of D(zQ, λ)). If

κi(z, λ) = fj(µz, λ) then let χi = rj . Thus Newt g(zQ, λ) =
∑s
i=1 χi
|Q| Newt D̂Q, and thus we have

Newt g(z, λ) =
∑s
i=1 χi
|Q| NewtDQ.
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Remark 5.3.2. Lemma 5.3.1 extends to facial polynomials. For a Zd-periodic potential, if Dw is

only homothetically reducible, so is (DQ)w. Thus the results of this section extend to (DQ)w. �

The following lemma is considered folklore and will provide us motivation. For A ∈ Nd, let

Q/A := ( q1
a1
, . . . , qd

ad
), and write A | Q if ai | qi for all i = 1, . . . , d.

Lemma 5.3.3. Suppose A = (a1, . . . , ad) ∈ Nd such that A | Q and let VQ be an AZ-periodic

potential. If DQ is irreducible, then DA is irreducible.

Proof. By way of contradiction, suppose that DA is reducible, that is, DA = f(z, λ)g(z, λ). The

fundamental domain WQ is a Q/A-expansion of WA, hence

DQ(z
q1
a1
1 , . . . , z

qd
ad
d , λ) =

∏
µ∈UQ/A

DA(µz, λ) =
∏

µ∈UQ/A

f(µz, λ)g(µz, λ).

By Lemma 3.1 of [16], there exist f ′ and g′ such that

f ′(z
q1
a1
1 , . . . , z

qd
ad
d , λ) =

∏
µ∈UQ/A

f(µz, λ) and g′(z
q1
a1
1 , . . . , z

qd
ad
d , λ) =

∏
µ∈UQ/A

g(µz, λ).

Therefore DQ(z1, . . . , zd, λ) = f ′(z1, . . . , zd, λ)g′(z1, . . . , zd, λ).

By Lemma 5.3.3, if DQ is irreducible and A | Q, then DA is irreducible. For the remaining

section, we assume D is irreducible for the Zd-periodic potential V and that VQ = V . Let σ =

{σ1, . . . , σk} ∈
(

[d]
k

)
be a k-element subset of the set [d] := {1, 2, . . . , d}. Let σ̄ = [d] r σ be the

complement of σ in [d]. Define σ �Q = (σ � q1, σ � q2, . . . , σ � qd), where σ � qi = qi if i ∈ σ,

and σ � qj = 1 if j 6∈ σ. Let Dσ�Q be the dispersion polynomial given by the periodic graph

operator L, with the Zd-periodic (and therefore (σ � Q)Z-periodic) labeling (VQ, E) associated

to the (σ � Q)Z-periodic graph Γ with fundamental domain given by the expansion Wσ�Q of W .

This notation will allows us study irreducibility of the dispersion polynomial as we incrementally

expand coordinate-wise from D = D(1,...,1) to DQ. Lemma 5.3.3 suggests this approach, as we

know that if DQ is irreducible, then for any k < d, we must have that any Dσ�Q is irreducible for

all σ ∈
(

[d]
k

)
. Indeed, this leads us to the following theorem.
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Theorem 5.3.4. Fix a positive integer k < d and suppose thatDσ�Q is irreducible for all σ ∈
(

[d]
k

)
.

If no k + 1 coordinates of Q share a common factor, then DQ is irreducible.

Proof. Assume that no k + 1 coordinates of Q share a common factor. Suppose there exist poly-

nomials g, h, with g not a monomial, such that

DQ = g(z, λ)h(z, λ).

Reordering, if necessary, we may assume that σ = [k]. As WQ is an expansion of Wσ�Q,

DQ(zσ̄�Q, λ) =
∏

γ∈Uσ̄�Q

Dσ�Q(z1, . . . , zk, γ1zk+1, . . . , γd−kzd, λ).

As Dσ�Q is irreducible, there exist γ1, . . . , γs ∈ Uσ̄�Q for some s ≥ 1 such that

g(zσ̄�Q, λ) =
s∏
i=1

Dσ�Q(z1, . . . , zk, γ
i
1zk+1, . . . , γ

i
d−kzd, λ).

Expand this so that

g(zQ, λ) =
s∏
i=1

∏
µ∈UQ

D(µ1z1, . . . , µkzk, γ
i
1zk+1, . . . , γ

i
d−kzd, λ)

can be written as a product of S := s
k∏
i=1

qi irreducible polynomials. As σ is arbitrary (that is,

the same argument holds for any σ ∈
(

[d]
k

)
after reordering coordinates), the product qσ1 · · · qσk

divides S for all σ ∈
(

[d]
k

)
. By our assumption, no k + 1 coordinates of Q share a common factor.

Therefore, if pa is a prime power that divides |Q|, there exists σ ∈
(

[d]
k

)
such that pa | qσ1 · · · qσk ,

and thus pa | S. As S is at most |Q|, it follows that S = |Q|, and so h must be a monomial.

To apply Theorem 5.3.4, we need to find conditions that imply Dσ�Q is irreducible for all

|σ| ≥ 1. Rather than depending strictly on Q, these conditions examine the reducibility of DQ in

relation to the interplay between Q and the support of D. We begin this discussion with a remark.
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Remark 5.3.5. We study howD(z, λ) relates toD(µz, λ) for µ ∈ UQ. In particular, we consider if

there exists a µ ∈ UQ such thatD(µz, λ) is given byD(z, λ) up to multiplication by some constant.

Since D(z, λ) has a term that is constant as a polynomial in z (a term that is a constant or a power

of λ), we may always assume that if such a µ exists, then D(µz, λ) = D(z, λ). �

Before stating these conditions in generality, we begin by building some intuition by studying

the case when d = 1. Suppose that σ = {1}, z = z1, and that q = q1 > 1. As D(z, λ) is

irreducible,

Dq(z
q, λ) =

∏
µ∈Uq

D(µz, λ).

If Dq(z, λ) = gh, where g and h are not monomials, then there exist µ1, . . . , µs ∈ Uq, where

1 ≤ s < q, such that

g(zq, λ) =
s∏
i=1

D(µiz, λ).

As s < q, there exists µ′ ∈ Uq such that µ′µ1 6∈ {µ1, . . . , µs}; indeed, such a µ′ must exist

otherwise s = q and Dq(z, λ) is irreducible as then h must be a monomial. As multiplying z by

elements of Uq does not change g(zq, λ), we have

g(zq, λ) = g((µ′z)q, λ) =
s∏
i=1

D(µ′µiz, λ).

As each D(µz, λ) is irreducible, there is a j ∈ {1, . . . , s} such that D(µ′µ1z, λ) = D(µjz, λ)

(see Remark 5.3.5). As µ′µ1 6= µj , we have that µ̂ = µ′µ1(µj)
−1 is not 1, and thus we have a

nontrivial element µ̂ ∈ Uq satisfying D(µ̂z, λ) = D(z, λ). Since D(µ̂z, λ) = D(z, λ), if υ(z, λ) is

a monomial term of D(z, λ), then υ(µ̂z, λ) = υ(z, λ). Thus if Dq(z, λ) is reducible, then ord(µ̂),

the order of µ̂, must divide the exponent of z in any term υ(z, λ) of D(z, λ).

Let b′ be the greatest common divisor of the finite set of integers {r | (r, t) ∈ A(D(z, λ)}.

Since µ̂ fixes the terms of D, ord(µ̂) divides b′. Since ord(µ̂) divides q = |Uq|, it follows that

gcd(q, b′) 6= 1. Thus if D(z, λ) is irreducible and gcd(q, b′) = 1, we obtain a contradiction. Thus

Dq(z, λ) is irreducible (as our assumption that Dq(z, λ) is reducible implies that gcd(q, b′) 6= 1).
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Indeed, if gcd(q, b′) = 1, then gcd(ord(µ̂), b′) = 1. By Euclid’s algorithm and the definition of

b′, there must exist zr1λt1 , . . . , zrlλtl as monomials, or their inverses, that appear as a term with a

nonzero coefficient in D(z, λ) with
∑
ri = b′. Therefore, as µ̂b′ 6= 1,

µ̂b
′
zr1+···+rlλt1...tl 6= zr1+···+rlλt1...tl , (5.4)

and so we cannot have (µ̂z)riλti = zriλti for all i ∈ [l]. This contradicts the assumption that

Dq(z, λ) is reducible (if it were, µ̂ would fix the terms of D(z, λ)).

To state the more general case, we first need to introduce a definition that will allow us to

identify the values ord(µ̂) can take for Dσ�Q to be reducible.

Definition 5.3.6. Let σ ∈
(

[n]
k

)
for some k ∈ [n] and let j ∈ σ. Let B be the collection of b such

that there is a vector in the integer span of A(D) that is b in the j-th coordinate and 0 for every

other coordinate i ∈ σ. The set B is an ideal of Z and is therefore principal. Define Divj,σ(D) to

be the principal generator of B (the greatest common divisor of the elements in B). �

If Q = q1, then Div1,{1}(D) = b′ (where b′ is from the discussion of the one-dimensional case).

In general, Dσ�Q can factor only if ord(µ̂) divides Div1,σ(D) (as otherwise the same situation as

(5.4) arises).

Example 5.3.7. Consider the polynomial f(z1, z2, λ) = z2
1z

2
2 + λz4

1 + λ3. Suppose there is a

µ1 ∈ T such that f(µ1z1, z2, λ) = cf(z1, z2, λ) for some c ∈ C. As every term must be fixed

under z1 → µ1z1, c = 1 because λ3 is invariant with respect to this change of variables. By

definition, Div1,{1}(f(z1, z2, λ)) = 2. Thus µ2
1 = 1, that is µ1 = ±1. This agrees with the fact that

µ2
1z

2
1z

2
2 = z2

1z
2
2 .

In this case, Div1,{1,2}(f(z1, z2, λ)) = 4. Given µ1 and µ2 in T, where f(µ1z1, µ2z2, λ) =

cf(z1, z2, λ), then c = 1. As λz4
1 is independent of µ2, the order of µ1 must divide 4.

Finally consider h(z1, z2, λ) = z−3
1 z2

2 + z2
1z
−1
2 + λ. Assume µ1 and µ2 are in T such that

h(µ1z1, µ2z2, λ) = ch(z1, z2, λ). Again, c = 1. We have (z−3
1 z2

2)(z2
1z
−1
2 )2 = z1. Therefore, we

find that Div1,{1,2}(h(z1, z2, λ)) = 1. As µ−3
1 z−3

1 µ2
2z

2
2 = z−3

1 z2
2 and µ2

1z
2
1µ
−1
2 z−1

2 = z2
1z
−1
2 , it follows
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z1 = (µ−3
1 z−3

1 µ2
2z

2
2)(µ2

1z
2
1µ
−1
2 z−1

2 )2 = µ1z1. We conclude that µ1 = 1. �

Remark 5.3.8. If σ′ ⊆ σ then Divj,σ′(D) divides Divj,σ(D). �

We now state the general case. Recall Remark 5.3.5; that is, we assume that if there exists a

µ ∈ UQ such that D(µz, λ) = cD(z, λ), then c = 1.

Lemma 5.3.9. Let VQ be a Zd-periodic potential. Suppose that there exists σ′ ∈
(

[d]
k−1

)
, where

1 ≤ k ≤ d, such that Dσ′�Q is irreducible. Let σ = i ∪ σ′ for some i 6∈ σ′. If qi is coprime to

b = Divi,σ(D), then Dσ�Q is irreducible.

Proof. After reordering we may assume that i = 1 and σ = {1, 2, . . . , k}. By way of contradiction,

suppose that Dσ�Q is reducible with factor g that is not a monomial, but gcd(q1, b) = 1. Let

σ′ = σ r {1}. Then

Dσ�Q(zq11 , z2, . . . , zd, λ) =
∏
µ∈Uq1

Dσ′�Q(µz1, z2, . . . , zd, λ).

As each Dσ′�Q(µz1, z2, . . . , zd, λ) is irreducible, g must have the following factorization,

g(zq11 , z2, . . . , zd, λ) =
s∏
i=1

Dσ′�Q(µiz1, z2, . . . , zd, λ),

where µi ∈ Uq1 and 1 ≤ s < q1; that is, a nonempty proper subset of the irreducible factors of

Dσ�Q(zq11 , z2, . . . , zd, λ) must appear as the irreducible factors of g(zq11 , z2, . . . , zd, λ). As s < q1,

there exists µ′ ∈ Uq1 such that µ′µ1 = µ̂ 6∈ {µ1, µ2, . . . , µs}. Notice we have the following two

factorizations,

g(zq11 , . . . , z
qk
k , zk+1, . . . , zd, λ) =

s∏
i=1

∏
γ∈U(1,q2,...,qk)

D(µiz1, γ2z2, . . . , γkzk, zk+1, . . . , zd, λ),

g((µ′z1)q1 , . . . , zqkk , zk+1, . . . , zd, λ) =
s∏
i=1

∏
γ∈U(1,q2,...,qk)

D(µ′µiz1, γ2z2, . . . , γkzk, zk+1, . . . , zd, λ).
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As each D(µz, λ) is irreducible and

g(zq11 , . . . , z
qk
k , zk+1, . . . , zd, λ) = g((µ′z1)q1 , . . . , zqkk , zk+1, . . . , zd, λ),

these two factorizations are the same. For µ̂ and a given γ ∈ U(1,q2,...,qk), there exists µl ∈

{µ1, µ2, . . . µs} and γ′ ∈ U(1,q2,...,qk) with

D(µ̂z1, γ2z2, . . . , γkzk, zk+1, . . . , zd, λ) = D(µlz1, γ
′
2z2, . . . , γ

′
kzk, zk+1, . . . , zd, λ).

Let µ̃ = µl(µ̂)−1. Notice that, as µ̂ 6∈ {µ1, . . . , µs}, µ̃ 6= 1. In particular, ord(µ̃) is an integer

greater than 1 that divides q1. If z2, . . . , zk do not appear in a monomial υ(z1, zk+1, . . . zd, λ) with

support in the integral span of A(D) then υ(µ̃z1, zk+1, . . . zd, λ) = υ(z1, zk+1, . . . zd, λ). Since

gcd(q1, b) = 1, by the definition of Div1,{1,2,...,k}(D) (= b), there exists a term υ(z1, zk+1, . . . zd, λ)

of D which is not fixed by ũ, a contradiction.

Remark 5.3.10. From the proof of Lemma 5.3.9 we can recover a version of [16, Lemma 3.4]. In

particular, suppose that for all µ ∈ UQ one has D(µz, λ) 6= D(z, λ) (using the assumption that D

has a term that is constant as a polynomial in z). This condition essentially encapsulates condition

(A2) of [16], which is an assumption of [16, Lemma 3.4]. Under this condition, notice that if g|DQ

and g is not a monomial, then we must have that D(µz, λ)|g(zQ, λ) for every µ ∈ UQ; but then

g(zQ, λ) =
∏
µ∈UQ

D(µz, λ) = DQ(zQ, λ). Thus Lemma 5.3.9 essentially gives us conditions for

when (A2) holds when expanding the fundamental domain along a single coordinate axis (allowing

us to apply the argument of [16, Lemma 3.4]).

More generally, suppose that there exists σ′ ( σ such that Dσ′�Q is irreducible and contains

a constant term as a polynomial in z. Without loss of generality, let σ = {1, . . . , l} ∪ σ′ where

{1, . . . , l} ⊆ σ′, and let UQ′ = U{1,...,l}�Q. If

Dσ′�Q(z1, . . . , zd, λ) 6= Dσ′�Q(µ1z1, . . . , µlzl, zl+1, . . . , zd, λ) for any µ ∈ UQ′ ,
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then Dσ�Q is irreducible. We avoid further discussions of this general criteria, as our goal is to

present practically verifiable conditions on D that enable us to conclude irreducibility for DQ. �

We will use the following corollary often in the examples of Section 5.4.

Corollary 5.3.11. Let VQ be the Zd-periodic potential V , and suppose that D is irreducible. If

there exist terms za1
1 , . . . , z

ad
d with nonzero coefficients in D, then DQ is irreducible for all Q such

that gcd(qi, ai) = 1 for all i.

Proof. No matter our choice of i and σ ⊆ [d], Divi,σ(D)|ai and thus gcd(qi,Divi,σ(D)) = 1.

Starting with the fact that D = D{}�Q is irreducible and applying Lemma 5.3.9, at each step, as

gcd(qi,Divi,σ(D)) = 1, Dσ�Q is irreducible for each σ ⊆ [d].

A facial polynomial (DQ)F is Zd-periodic if there exists a Zd-periodic potential V ′ correspond-

ing to a dispersion polynomial D′Q such that (DQ)F = (D′Q)F . Suppose that for a QZ-periodic

potential VQ the facial polynomial (DQ)F is Zd-periodic due to the existence of a Zd-periodic V ′.

By Remark 5.3.2, ifDF is only homothetically reducible for V ′, then (DQ)F is only homothetically

reducible. By Theorem 5.2.4, we obtain the following corollary.

Corollary 5.3.12. Suppose that for every facet F of NewtDQ, except possibly one, (DQ)F is Zd-

periodic via the existence of a Zd-periodic potential VF . If, for each F , DF is only homothetically

reducible for VF , then DQ is only homothetically reducible.

5.4 Applications

We conclude with examples of periodic graph operators associated to various families of

periodic graphs which have irreducible Bloch varieties. We assume that all edge labels are nonzero.

For a Laurent polynomial f and a face F of Newt f , the facial polynomial fF is potential-

independent if the potential, treated as a finite vector of indeterminates, does not appear in the

coefficients of fF . If a facial polynomial (DQ)F is potential-independent, then (DQ)F is Zd-

periodic via the zero potential. A face F of NewtD (and its facial polynomial DF ) is apical if F

contains the apex of NewtD, (0, . . . , 0,m).
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Let Sm be the symmetric group on m elements, L(z, λ) := L(z)− λI , and let Li,j(z, λ) be the

(i, j) entry of L(z, λ). For w ∈ Zd+1, we call w · (a, l) the weight of the term zaλl with respect to

w. The monomial terms in τL(z, λ) :=
m∏
i=1

Li,τ(i)(z, λ) are said to be terms produced by τ . Notice

that in this way, D(z, λ) =
∑

τ∈Sm sgn(τ)τL(z, λ). We say a permutation τ ∈ Sm contributes to

terms of Dw if A(τL(z, λ)) ∩ A(Dw) 6= ∅. We say τ is nonzero if τL(z, λ) 6= 0.

A Zd-periodic graph is a 1-vertex graph if it has a single vertex orbit with respect to its Zd-

action. For d ≥ 1, let Γ be a 1-vertex Zd-periodic graph. Let L be a periodic graph operator

associated to Γ. By [19], D is irreducible as NewtD is a pyramid of height 1. If d > 1, any apical

facet of NewtD is also a pyramid of height 1 and thus has an irreducible facial polynomial.

Figure 5.1: On the graph to the left, the orange edges are representatives of the edge orbits. On the
graph to the right, the square lattice with a highlighted (3, 2)-expansion of the fundamental domain
is depicted.

Suppose Q ∈ Nd and let V be a QZ-periodic potential. For any nonbase face F , L̂Q(z, λ)

has one contributing permutation (the identity permutation) through its main diagonal, with each

entry in the diagonal contributing terms of the same negative weight. Thus the facial polyno-

mial (D̂Q)F , and therefore (DQ)F , is potential-independent. By Equation (5.3), (DQ)F (zQ, λ) =∏
µ∈UQ

DF (µz, λ). It follows that NewtDQ is a contracted Q-dilation of NewtD and therefore a

pyramid. Hence, DQ is only homothetically reducible. To conclude that DQ is irreducible, we

must show that one facial polynomial is irreducible.
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Example 5.4.1. Consider a Zd-periodic 1-vertex graph Γ, where d ≥ 1, such that D has a facial

polynomial DF with the extreme monomials za1
1 , . . . , z

ad
d . Two examples of 1-vertex graphs with

this property are shown in Figure 5.1 ([12, Figure 6]). If qi is coprime to ai for each i, then by

Corollary 5.3.11 (DQ)F is irreducible. Thus, by Corollary 5.2.5, DQ(z, λ) is irreducible for all

potentials.

Consider the left-hand graph of Figure 5.1. The polytope NewtD has a face with the extreme

monomials z3
1 and z2

2 . If q1 is coprime to 3 and q2 is coprime to 2 then DQ(z, λ) is irreducible. �

Example 5.4.2. Let d ≥ 1. Take any 1-vertex Zd-periodic graph with at least one edge. Pick

an apical facet F of NewtD. Notice that there must be some monomial za occurring as a term

of DF with a nonzero coefficient, for some a (6= 0) ∈ Zd. Due to this, the collection of Q =

(q1, . . . , qd) ∈ Nd such that D{i}�Q is irreducible for all i ∈ [d] is infinite. In particular, this set

contains theQ ∈ Nd such that gcd(ai, qi) = 1; as Divi,{i}(DF ) must divide ai,D{i}�Q is irreducible

by Lemma 5.3.9. Moreover, we consider the infinite set of Q ∈ Nd such that gcd(ai, qi) = 1 and

the coordinates of Q are pairwise coprime. Given a Q in this infinite subset, we see that (DQ)F is

irreducible by Theorem 5.3.4. Thus DQ is irreducible for all potentials. �

Remark 5.4.3. The results of these last two examples overlap with the results and methods of [16].

In particular, if F is a facet that is not the base, thenDQ is irreducible ifDF (µz, λ) 6= DF (z, λ) for

all µ ∈ UQ (this is what they refer to as condition (A2), see Remark 5.3.10). In [16] 1-vertex graphs

were considered, and thus checking whether (A2) is satisfied is sufficient to conclude irreducibility

ofDQ; as this condition implies irreducibility of the facial polynomial (DQ)F and only homothetic

reducibility immediately follows from the fact that the Newton polytope are pyramids (this is

essentially [16, Lemma 3.6]).

A difference between these methods is that we only require that any facial polynomial be

irreducible, whereas in [16] they always fix the face given by w = (1, . . . , 1,−1). For example,

in [16] it is concluded that the dispersion polynomial obtained from the Schrödinger operator

associated to the Harper lattice is irreducible for all (q1, q2)Z-periodic potentials when q1 and q2 are

coprime, but choosing another facial polynomial (for example, corresponding to w = (−1, 0,−1))

53



reveals that q1 and q2 do not need to be coprime. �

We adapt the following setting from [15, Chapter 4]. Let Γ be a connected, Zd-periodic graph

with fundamental domain W and support A(Γ). The graph Γ is dense if for all a ∈ A(Γ), there is

an edge in Γ between each pair of vertices in the union of W and a+W .

Example 5.4.4. Consider a Zd-periodic dense graph Γ. As Γ is dense, by [15, Lemma 4.3],

NewtD and its apical facets are pyramids for a generic labeling c. For Q ∈ Nd, it is straight-

forward to deduce that any nonbase facial polynomial DQ is potential-independent and thus only

homothetically reducible (such as in Examples 5.4.1 and 5.4.2); in fact, any connected 1-vertex

graph is dense). By Theorem 5.2.4, DQ is only homothetically reducible. To show DQ is irre-

ducible for all potentials, it suffices to show that (DQ)F is irreducible for some face F .

In dimensions 2 and 3, proved that each DF is irreducible when F is not a vertex. By [15,

Theorem 4.2], for a generically labeled dense Z2- or Z3-periodic graph, the zero-set of DF is

smooth (and D|F is square-free) for any nonbase face F . In particular, this implies that for every

facet F , DF is irreducible (see [20]). It follows that DF is irreducible for any nonbase face F . As

the nonbase facial polynomials are potential-independent, it follows that DQ is irreducible for all

potentials for infinitely many choices of Q (as in Example 5.4.2).

Figure 5.2: A periodic dense graph and its corresponding Newton polytope.

Consider the Z2-periodic dense graph from [9] and depicted in Figure 5.2 ([12, Figure 8]). The
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Floquet matrix of the periodic graph operator has entries:

L1,1(z, λ) = α + β1(2− z1 − z−1
1 ) + β2 + β3 + γ1(2− z2 − z−1

2 ) + γ2 + γ3 + V1 − λ

L1,2(z, λ) = −α− β2z1 − β3z
−1
1 − γ2z2 − γ3z

−1
2

L2,1(z, λ) = −α− β2z
−1
1 − β3z1 − γ2z

−1
2 − γ3z2

L2,2(z, λ) = α + β4(2− z1 − z−1
1 ) + β2 + β3 + γ4(2− z2 − z−1

2 ) + γ2 + γ3 + V2 − λ.

Where α, βi, γj are edge labels. Let F be the facet of NewtD exposed by (−1,−1,−1), then

DF has exactly the monomial terms λ2, z2
1 , z

2
2 , λz1, λz2, and z1z2. By [15, Theorem 4.2], DF

is irreducible. As λz1, λz2, and λ2 are terms of DF , Div1,σ(DF ) and Div2,σ(DF ) both equal 1

for σ = {1, 2}. By Corollary 5.3.11, (DQ)F is irreducible for any choice of q1 and q2, and by

Corollary 5.2.5, DQ is irreducible for all potentials. �
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6. TORIC COMPACTIFICATIONS OF PERIODIC GRAPH OPERATORS

In Chapter 5, we gave criteria for the (ir)reducibility of the dispersion polynomial of a periodic

graph operator based on the geometry of its Newton polytope. Associated to this polytope is a fan

Σ which corresponds to a normal toric varietyXΣ that contains the ambient space of the (complex)

Bloch variety of this operator. In this chapter, we compactify this Bloch variety in XΣ and study

its asymptotics. Studying compactifications of Bloch varieties is not new (see [3, 12, 14, 15, 21]).

Our contribution is to realize the compactification of the Bloch variety of a periodic graph operator

as coming from an operator that extends to the boundary of its ambient toric variety.

In Section 6.1 we give an algebro-geometric analogue of the Floquet transform of a function

by introducing sheaves of quasi-periodic functions on the affine toric varieties corresponding to

the cones in the fan Σ. In Section 6.2, we glue these sheaves together to form a sheaf on the toric

variety XΣ and show this sheaf is isomorphic to a trivial sheaf on XΣ.

The Newton polytope of a dispersion polynomial has a distinguished facet known as its base.

In Section 6.3, we define a periodic graph operator as an endomorphism on a sheaf of quasi-

periodic functions on the affine toric variety corresponding to the base of its Newton polytope.

The characteristic matrix of this operator is an endomorphism on a trivial sheaf on this affine

toric variety, and the Bloch variety of this operator is revealed as the support of the kernel of this

characteristic matrix. In Section 6.4, we compactify this Bloch variety in the toric variety XΣ

associated to the fan Σ of the Newton polytope of its dispersion polynomial. Section 6.5 shows

that if this Newton polytope is full, we may associate to an apical, nonvertex face of the polytope a

periodic, labeled, directed graph whose operator has Bloch variety equal to the intersection of the

compactified Bloch variety and the orbit corresponding to that face.

This chapter is based on work with Matthew Faust, Stephen Shipman, and Frank Sottile in the

upcoming article [13].
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6.1 Sheaves of Quasi-Periodic Functions

We follow the description of cones and fans from [10, Section 2.1]. Let N be a finitely gener-

ated free abelian group and let M := Hom(N,Z) be its dual group. Let Σ be a fan in N . We study

a particular class of sheaves on affine toric varieties associated to cones in Σ.

Given a cone σ ∈ Σ, its corresponding affine toric variety Vσ is specC[σ∨]. Let OVσ be the

structure sheaf on Vσ and set R := OVσ(Vσ) = C[σ∨]. In order to give an algebro-geometric

analogue to the Floquet transform of a function, we consider the quasi-coherent sheaf
∏
a∈M

OVσ .

Since a quasi-coherent sheaf on an affine variety is determined by its module of global sections, it

suffices to consider the R-module RM :=
∏
a∈M

R. For each a ∈M , the function

ev(a) : RM −→ R

ψ 7−→ ψ(a)

is a homomorphism of R-modules called the evaluation of ψ at a in M .

Let 0 ∈ M be the identity of the group M . The lineality space of the cone σ∨ ⊆ M is the

group Mσ := σ∨ ∩ (−σ∨). Consider a splitting β : M/Mσ →M of the exact sequence

0 Mσ M M/Mσ 0ι π

β

(6.1)

where ι is the inclusionMσ ⊂M and π is the projection ontoM/Mσ. ThenM is the internal direct

sum Mσ ⊕ β(M/Mσ). Write m ∈ σ∨ as zm ∈ R = C[σ∨]. A function ψ ∈ RM is quasi-periodic

with respect to the splitting β if for a ∈M, ` ∈Mσ, and m ∈M/Mσ, ψ(a+ `+ β(m)) = z`ψ(a).

The setQβ of such quasi-periodic functions is closed under addition and multiplication by elements

in R, making it into an R-submodule of RM .

If γ : M/Mσ →M is another splitting of the exact sequence (6.1), then the difference β−γ is a

homomorphism fromM/Mσ toMσ. Precomposing this with the projection π : M →M/Mσ gives

the homomorphism ρ : M → Mσ defined by ρ(a) := (β − γ)(π(a)). In particular, for ` ∈ Mσ,
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ρ(`) = 0, and for m ∈M/Mσ, ρ(β(m)) = (β − γ)(m) = ρ(γ(m)) as π(β(m)) = π(γ(m)) = m.

Let R× be the group of units of R. For a ∈M , multiplication by zρ(a) ∈ R× is an isomorphism

R
∼−→ R of R-modules. This induces the R-module isomorphism Aγβ : RM

∼−→ RM given by

(Aγβψ)(a) := zρ(a)ψ(a). Moreover, A−1
γβ = Aβγ since (Aβγψ)(a) = z−ρ(a)ψ(a) for a ∈M .

Lemma 6.1.1. Let β and γ be splittings of the exact sequence (6.1) and letQγ be the R-module of

quasi-periodic functions with respect to the splitting γ. Under the isomorphismAγβ , the R-modules

Qβ and Qγ are isomorphic.

Proof. Let ψβ ∈ Qβ , a ∈ M , ` ∈ Mσ, and m ∈ M/Mσ. Since ρ is a homomorphism, ρ(`) = 0,

and ρ(γ(m)) = (β − γ)(m),

(Aγβψβ)(a+ `+ γ(m)) = zρ(a) · zρ(`) · z(β−γ)(m)ψβ(a+ `+ γ(m))

= zρ(a) · z(β−γ)(m)ψβ(a+ `+ (γ − β)(m) + β(m))

= z` · zρ(a) · z(β−γ)(m)+(γ−β)(m)ψβ(a+ β(m)) = z`Aγβψβ(a)

showing that Aγβψβ ∈ Qγ . Similarly, if ψγ ∈ Qγ , then Aβγψγ ∈ Qβ . Since Aγβ is an isomor-

phism, it follows that Qβ ' Qγ .

Proposition 6.1.2. Under the evaluation ev(0) : RM → R, the R-module Qβ is isomorphic to R.

Proof. Let ψβ ∈ Qβ and a ∈ M . Then ψβ(a) = zaψβ(0), showing ψβ ∈ Qβ is determined by its

value at 0.

For the remainder of this chapter, we fix a splitting β : M/Mσ → M such that M = Mσ ⊕

β(M/Mσ) and denote Qβ by Qσ. Let Q̃σ be the sheaf on Vσ = specC[σ∨] associated to the

R-module Qσ. This sheaf is the sheaf of quasi-periodic functions on Vσ.

6.2 Gluing Sheaves of Quasi-Periodic Functions

The toric variety XΣ associated to the fan Σ is obtained from the collection {Vσ | σ ∈ Σ} of

affine toric varieties Vσ by gluing along the inclusions Vτ ⊂ Vσ whenever τ, σ are cones in Σ and

τ is a face of σ. We show there is a sheaf Q̃Σ on XΣ obtained from the collection {Q̃σ | σ ∈ Σ} of
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sheaves of quasi-periodic functions on affine toric varieties Vσ corresponding to cones σ in Σ. We

also show this sheaf is isomorphic to the trivial sheaf OXΣ
.

Theorem 6.2.1. There exists a rank-one sheaf Q̃Σ on XΣ such that for any cone σ in Σ, the

restriction of QΣ to the affine toric variety Vσ is isomorphic to Qσ.

We give gluing data for the collection {Q̃σ | σ ∈ Σ}. For the remainder of this section, let

τ, σ be cones in Σ and assume τ is a face of σ. Let R = C[σ∨] and S = C[τ∨] so that R ⊆ S. Let

Mσ and Mτ be the lineality spaces of the cones σ∨ and τ∨, respectively, and note that Mσ ⊂ Mτ .

Consider a splitting γ : Mτ/Mσ →Mτ of the exact sequence

0 Mσ Mτ Mτ/Mσ 0ι π

γ

(6.2)

where ι is the inclusion Mσ ⊂ Mτ and π is the projection onto Mτ/Mσ. Then Mτ is the internal

direct sum Mσ ⊕ γ(Mτ/Mσ). By considering a splitting β : M/Mσ →M of the exact sequence

0 Mτ M M/Mτ 0,ι π

β

(6.3)

M is the internal direct sum Mτ ⊕ β(M/Mτ ) = Mσ ⊕ γ(Mτ/Mσ)⊕ β(M/Mτ ).

Let πγ : M → γ(Mτ/Mσ) be the projection onto γ(Mτ/Mσ) ⊂ Mτ . For a ∈ M , ` ∈ Mσ,

m′ ∈Mτ/Mσ and m ∈M/Mτ , the map πγ satisfies πγ(a+ `+ γ(m′) + β(m)) = πγ(a) + γ(m′).

Let S× be the group of units of S. For a ∈ M , multiplication by zπγ(a) ∈ S× is an isomorphism

S −→ S of S-modules. Since RM ⊗R S ' SM , multiplication by zπγ(a) for all a ∈ M induces an

S-module homomorphism gτσ : Qσ ⊗R S −→ Qτ defined by (gτσψσ)(a) := zπγ(a)ψσ(a) for a ∈M .

Lemma 6.2.2. Let γ : Mτ/Mσ → Mτ and β : M/Mτ → M be splittings of the exact se-

quences (6.2) and (6.3), respectively. Then gτσ(Qσ ⊗R S) ⊆ Qτ

Proof. Let ψσ ∈ Qσ ⊗R S. Since Mτ is the internal direct sum Mσ ⊕ γ(Mτ/Mσ), any element of

Mτ may be expressed as a sum ` + γ(m′) for ` ∈ Mσ and m′ ∈ Mτ/Mσ. Let a ∈ M , ` ∈ Mσ,
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m′ ∈Mτ/Mσ and m ∈M/Mσ. As πγ(`+ β(m)) = 0,

gτσψσ(a+ `+ γ(m′) + β(m)) = zπγ(a+`+γ(m′)+β(m))ψσ(a+ `+ γ(m′) + β(m))

= zπγ(a)+γ(m′) · z`ψσ(a) = z`+γ(m′)gτσψσ(a),

showing that gτσψτ ∈ Qτ .

To show that the homomorphisms gτσ are gluing data for a sheaf on XΣ, we need to show they

behave well under composition. Suppose η is a face of the cone τ and let T = C[η∨]. Let Mη be

the lineality space of η∨. Observe that Mσ ⊂ Mτ ⊂ Mη (since τ is assumed to be a face of the

cone σ). Consider a splitting γ′ : Mη/Mσ →Mη of the exact sequence

0 Mτ Mη Mη/Mτ 0ι π

γ′

(6.4)

where ι is the inclusion Mτ ⊂ Mη and π is the projection onto Mη/Mτ . Then Mη is the internal

direct sum Mτ ⊕ γ′(Mη/Mτ ). By considering the splitting γ : Mτ/Mσ → Mτ of the exact

sequence (6.2), then Mη is the internal direct sum Mσ ⊕ γ(Mτ/Mσ)⊕ γ′(Mη/Mτ ).

Similarly, we may consider a splitting γ̃ : Mη/Mσ →Mη of the exact sequence

0 Mσ Mη Mη/Mσ 0ι π

γ̃

(6.5)

where ι is the inclusion Mσ ⊂ Mη and π is the projection onto Mη/Mσ. Then Mη is the internal

direct sum Mσ ⊕ γ̃(Mη/Mσ). It follows that γ(Mτ/Mσ)⊕ γ′(Mη/Mτ ) ' γ̃(Mη/Mσ).

Consider a splitting β′ : M/Mη →M of the exact sequence

0 Mη M M/Mη 0ι π

β′

(6.6)
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where ι is the inclusion Mη ⊂M and π is the projection onto M/Mη. It follows that

M = Mη ⊕ β′(M/Mη) = Mσ ⊕ γ̃(Mη/Mσ)⊕ β′(M/Mη)

= Mσ ⊕ γ(Mτ/Mσ)⊕ γ′(Mη/Mτ )⊕ β′(M/Mη).

Let πγ̃ and πγ′ be the projection of M onto γ̃(Mη/Mσ) and γ′(Mη/Mτ ), respectively. Then πγ̃ =

πγ + πγ′ . Since η is a face of τ and σ, consider the induced homomorphisms gητ : SM −→ TM ,

gτσ : RM −→ SM , and gησ : RM −→ TM .

Lemma 6.2.3. Let η ⊂ τ ⊂ σ and let γ′ : Mη/Mτ → Mη and γ̃ : Mη/Mσ → Mη be splittings of

the exact sequences (6.4) and (6.5), respectively. Then gησ = gητ ◦ gτσ.

Proof. Let ψσ ∈ Qσ ⊗R T. Since πγ + πγ′ = πγ̃ , we obtain

(gητ ◦ gτσψσ)(a) = zπγ′ (a) · zπγ(a)ψσ(a) = z(πγ′+πγ)(a)ψσ(a)

= zπγ̃(a)ψσ(a) = gησψσ(a)

for all a ∈M . Thus, gησ = gητ ◦ gτσ.

Suppose there exists τ ′ ∈ Σ such that η ⊂ τ ′ ⊂ σ. By Lemma 6.2.3, gητ ′◦gτ ′σ = gησ = gητ◦gτσ

so the homomorphisms gτσ behave well under composition.

Proof of Theorem 6.2.1. By Lemma 6.2.3, the collection {gτσ | τ, σ ∈ Σ, τ ⊂ σ} of homo-

morphisms is a gluing datum for a sheaf Q̃Σ on XΣ. Since ev(0) ◦ gτσ : Qσ ⊗R S
∼−→ S is an

isomorphism, the sheaves Q̃Σ and OXΣ
are isomorphic.

By Lemma 6.1.1 and Proposition 6.1.2, the sheaf Q̃Σ is unique up to unique isomorphism. We

call Q̃Σ the sheaf of quasi-periodic functions on XΣ.

Example 6.2.4. Let Σ be the fan depicted in Figure 6.1. Consider the cone σ generated by the

vectors (1, 1), (1, 0) and (1,−1), and the ray τ generated by the vector (1, 1). Suppose Z2 is the
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τ

σ
(0, 0)

(1, 1)

(1, 0)

(1,−1)

Figure 6.1: The fan of the two-dimensional cross polytope.

internal direct sum Z(1,−1)⊕ Z(1, 0). Set R = C[xy, xy−1, x] and S = C[(xy−1)±, x]. Then

Qσ =
{
ψσ ∈ RZ2 | ψσ(a+r, b+s) = ψσ(a, b)

}
and

Qτ =
{
ψτ ∈ SZ2 | ψτ (a+r+s, b−r) = (xy−1)rψτ (a, b)

}
.

We show how to glue Q̃σ and Q̃τ along the intersection Vσ ∩ Vτ = Vτ . Let π(a, b) := (b,−b) be

the projection of Z(1,−1)⊕ Z(1, 0) onto Z(1,−1). Then gτσ : Qσ ⊗R S −→ Qτ is given by

gτσψ(a, b) := (xy)π(a,b)ψ(a, b), where π(a+ r + s, b− r) = π(a, b) + (r,−r).

Let ψσ ∈ Qσ ⊗R S. Since π(r, 0) = (0, 0),

gτσψσ(a+ r + s, b− r) = (xy−1)rgτσψσ(a, b),

showing that gτσψσ ∈ Qτ and gτσ(Qσ ⊗R S) ⊆ Qτ . �

Let W be a finite set and let a ∈ M . Taking the direct sum of |W | copies of RM = C[σ∨]M ,
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we obtain the R-module homomorphism

⊕
u∈W

ev(a) :
⊕
u∈W

RM −→
⊕
u∈W

R, (6.7)

which we identify with ev(•, a) : RW×M −→ RW . We also identify the R-submodule
⊕
u∈W
Qσ with

QWσ :=
{
ψσ ∈ RW×M | ψσ(u, a+`+β(m)) = z`ψσ(u, a) for ` ∈Mσ and m ∈M/Mσ

}
.

By Proposition 6.1.2, we obtain the following corollary.

Corollary 6.2.5. For any cone σ in Σ, the R-module homomorphism ev(•, 0) : QWσ −→ RW is an

isomorphism.

Using Theorem 6.2.1 and Corollary 6.2.5, we obtain the sheaf Q̃W
Σ :=

⊕
u∈W

Q̃Σ of quasi-periodic

functions on XΣ. We summarize the results of this section with the following theorem.

Theorem 6.2.6. For any cone σ in Σ, the restriction of Q̃WΣ to the affine toric variety Vσ is isomor-

phic to Q̃Wσ . The sheaf Q̃WΣ is isomorphic to the trivial sheaf OW
XΣ

.

6.3 Periodic Graph Operators on Sheaves of Quasi-Periodic Functions

We use the tools developed in Sections 6.1 and 6.2 to define periodic graph operators as endo-

morphisms on sheaves of quasi-periodic functions. We define the Bloch variety of a periodic graph

operator and show it is the support of a particular kernel sheaf.

Let Γ = (V , E) be a Zd-periodic graph and let W ⊂ V be a fundamental domain for the action

of Zd on Γ. We identify the set of vertices V with W × Zd as in [33, Section 2.2.1]. Consider the

C[z±]-module

QW0 :=
{
ψ ∈ C[z±]W×Z

d | ψ(u, a+ `) = z`ψ(u, a) for u ∈ W and a, ` ∈ Zd
}

of quasi-periodic functions on (C×)d. Fix a labeling c := (c, V ) of Γ. A periodic graph operator

on QW0 is a C[z±]-module endomorphism Lc : QW0 −→ QW0 such that for ψ ∈ QW0 , Lcψ is defined
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by its value at (u, a) ∈ W × Zd,

(Lcψ)(u, a) := V (u, a)ψ(u, a)−
∑

(u,a)∼(v,b)

c(u,a)∼(v,b)ψ(v, b),

where (u, a)∼(v, b) means (u+a, v+b) ∈ E (see Section 2.3).

Set 0 := (0, . . . , 0) ∈ Zd. By Corollary 6.2.5, the induced action of Lc on C[z±]W is multi-

plication by the Floquet matrix Lc(z) (see Section 2.1), and by extension of scalars, the induced

action of Lc − λ IdQW0 on C[z±, λ]W is multiplication by the characteristic matrix Lc(z) − λIW .

The kernel of the endomorphism Lc(z) − λIW on C[z±, λ]W induces a sheaf F on (C×)d × C

called the Floquet sheaf of the operator Lc(z) − λIW . The support of this Floquet sheaf F is the

Bloch variety BLc ([33, Section 4.2.4]). Equivalently, the Bloch variety BLc is the set Var(Dc),

where Dc := det(Lc(z)− λIW ) is the dispersion polynomial of the operator Lc.

Lemma 6.3.1. The kernel of the operator Lc(z) − λIW on C[z±, λ]W equals the kernel of the

operator α(Lc(z) − λIW ) on C[z±, λ]W for any unit α ∈ C[z±]. It follows that the support of

Lc(z)− λIW equals the support of α(Lc(z)− λIW ) for any unit α ∈ C[z±].

LetA(Dc)⊂ Zd+1 be support ofDc. The Newton polytope ofDc is Newt(Dc) := conv(A(Dc)) ⊂

Rd+1. Set P := Newt(Dc) and let ΣP be the fan in Zd+1 associated to P . Recall from Section 4.4

that each cone σF ∈ ΣP corresponds to a unique face F of P . For e := (0, 1) ∈ Zd+1, the ray σB

:= Ne in ΣP corresponds to the base B = conv(A(detLc(z))) of P . Let VB ' (C×)d × C be the

affine toric variety corresponding to the ray σB. The lineality space of σ∨B is MB = Zd × {0}. By

extension of scalars, the C[z±]-module QW0 is isomorphic to the C[σ∨B]-module

QWB :=
{
ψB ∈ C[σ∨B]W×Z

d+1 | ψB(u, a+ `+ β(m)) = z`ψB(u, a),

for ` ∈MB and m ∈ Zd+1/MB

}
of quasi-periodic functions on VB. By Corollary 6.2.5, the induced action of Lc − λ IdQWB on

C[σ∨B]W ' C[z±, λ]W is multiplication by the characteristic matrix Lc(z)− λIW , and the support

of F is the Bloch variety BLc in VB ' (C×)d × C.
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6.4 A Toric Compactification of the Bloch Variety

Let P be the Newton polytope of the dispersion polynomial Dc of a periodic graph operator

Lc. As a complex algebraic hypersurface in VB, the Bloch variety BLc is not compact. By The-

orem 4.4.5, the toric variety XΣP associated to P is compact. Thus, as VB ⊂ XΣP , the Zariski

closure BLc of BLc in XΣP is a compactification of the Bloch variety BLc . To study the points

added in the compactification, we adapt the following terminology from [14].

Lemma 6.4.1. [14, Lemma 1.10] Let F be a face of the polytope P , and let MF be the lineality

space of the cone σ∨F ⊆ Zd+1. We have canonical maps

C[MF ] C[σ∨F ] C[MF ], π ◦ ι = Iι π (6.8)

that induce canonical maps of affine toric varieties

OF VF OF ,π∗ ι∗

where OF denotes the orbit in VF corresponding to the face F .

Let f be a polynomial with supportA(f) ⊂ Zd+1 and let F be a face of the polytope P . Recall

from Section 4.2 that the facial polynomial fF of f is the sum of the terms of f whose exponent

vectors lie in A(f) ∩ F . Since we will encounter polynomials whose notation involves subscripts,

we will also write inFf for the facial polynomial fF .

Lemma 6.4.2. [14, Lemma 1.11] Let f be a polynomial with support A(f) ⊂ Zd+1 and let

Var(f) ⊂ (C×)d+1. Denote the Zariski closure of Var(f) in XΣ by Var(f). For any face F

of the polytope P and r ∈ F ∩ Zd+1,

(1) z−rf ∈ C[σ∨F ] and Var(z−rf) ⊂ VF is Var(f) ∩ VF , and

(2) z−rfF = π(z−rf) ∈ C[MF ] and Var(z−rfF ) ⊂ VF is Var(f) ∩ OF where the map

π : C[σ∨F ] � C[MF ] is the canonical map in Lemma 6.4.1.
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Proof. (1) The polynomial f defines Var(f) ⊂ (C×)d+1. Let 〈f〉 be the principal ideal of C[Zd+1]

generated by f . The closure Var(f) ∩ VF in VF is defined by 〈f〉 ∩C[σ∨F ]. Let αzc be a term of f

with α ∈ C× and c ∈ A(f) ∩ F . Then the polynomial z−cf has α as a constant term and z−cf ∈

C[σ∨F ] since A(f) − c ⊆ σ∨F . If a ∈ σ∨F , then za ∈ C[σ∨F ] so that zaz−cf ∈ C[σ∨F ]. Conversely,

suppose zaz−cf ∈ C[σ∨F ] for some a ∈ Zd+1. Then αza is a term of zaz−cf , which implies

a ∈ σ∨F . Thus 〈f〉 ∩ C[σ∨F ] is the principal ideal of C[σ∨F ] generated by z−cf . Let r ∈ F ∩ Zd+1.

Then z−rf = zc−rz−cf . Since c− r ∈MF , zc−r is invertible in C[σ∨F ] and 〈z−rf〉 = 〈z−cf〉.

(2) Using the map π in (6.8), π(z−rf) = z−rfF .

Let F be a face of P and let r ∈ F ∩ Zd+1. By Lemma 6.4.2, the polynomial z−rDc is in the

monoid algebra C[σ∨F ] and z−rinFDc is in C[MF ]. As Dc = det(Lc(z) − λIW ), we investigate

when the endomorphism Lc(z) − λIW of C[σ∨B]W extends to C[σ∨F ]W such that, when the terms

of its corresponding matrix restrict to C[MF ], it becomes an endomorphism of C[MF ]W and the

determinant of its corresponding matrix is nonzero. In Section 6.5, we show that if P is full, then

Lc(z) − λIW extends to an endomorphism of C[σ∨F ]W in this way for particular faces F of the

polytope P .

6.5 Full Newton Polytopes

Let Γ = (V , E) be a Zd-periodic graph and let W ⊂ V be a set of orbit representatives of the

free action of Zd on Γ. Consider a periodic graph operator Lc on QWB and let Lc(z) be its Floquet

matrix. Let SW be the symmetric group on the set W . For u, v ∈ W , let fu,v denote the entry of

the Floquet matrix Lc(z) in the (u, v)-position (see Section 2.4). We may express the determinant

of Lc(z) as

detLc(z) =
∑
ρ∈SW

sgn(ρ)
∏
u∈W

fu,ρ(u), (6.9)

where sgn(ρ) is the sign of the permutation ρ.

We adapt the following setting from [15, Chapter 4]. Since A(Γ) is the support of the graph Γ,

each term in Lc(z) has support a subset of conv(A(Γ)) and each diagonal entry of the characteristic

matrix Lc(z)− λIW has support a subset of A(Γ) ∪ {e}. Set Q := conv(A(Γ) ∪ {e}).
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Lemma 6.5.1. [15, Lemma 4.1] Let P be the Newton polytope of the dispersion polynomial Dc.

Then P is a subpolytope of the dilation |W |Q.

Proof. Since

Newt
(∏
u∈W

(fu,ρ(u) − λδu,ρ(u))
)

=
∑
u∈W

Newt(fu,ρ(u) − λδu,ρ(u)),

for each ρ ∈ SW ,
∏
u∈W

(fu,ρ(u) − λδu,ρ(u)) has Newton polytope a subpolytope of |W |Q.

The Newton polytope P = NewtDc is full if P = |W |Q. If P is full, for each face F of P

there exists a unique face G of Q such that F = |W |G. Suppose the Newton polytope P is full.

Let F be a face of P and let G be its corresponding face in Q. The facial matrix inG(Lc(z)−λIW )

corresponding to the face G is the matrix of terms of Lc(z) − λIW whose exponent vectors lie in

G. We define the facial matrices inGLc(z) and inGλIW corresponding to G analogously.

Lemma 6.5.2. Suppose P = Newt(Dc) is full. Let G be a face of Q such that F = |W |G is a face

of P . Then inF detLc(z) = det(inGLc(z)).

Proof. Since detLc(z) =
∑
ρ∈SW

sgn(ρ)
∏
u∈W

fu,ρ(u), we obtain

inF
(
detLc(z)

)
=
∑
ρ∈SW

sgn(σ)inF
(∏
u∈W

fu,ρ(u)

)
.

Thus, it suffices to show that for all ρ ∈ SW ,

inF
(∏
u∈W

fu,ρ(u)

)
=
∏
u∈W

(
inGLc(z)

)
u,ρ(u)

.

Let ρ ∈ SW . Each of the terms of the facial polynomial inF
( ∏
u∈W

fu,ρ(u)

)
has weight hF and for

each u ∈ W , each of the terms of the facial polynomial
(
inGLc(z)

)
u,ρ(u)

has weight hG. Since P

is full, hF = |W |hG. As each vertex of P has a corresponding term in detLc(z) with a nonzero

coefficient, the result follows.
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Lemma 6.5.3. LetG be a nonvertex face ofQ such that F = |W |G is a face of P . The determinant

of the facial matrix inGLc(z) is nonzero.

Proof. Since G is not a vertex, the face F is not a vertex, so F contains a vertex s in the base

of P . By Lemma 6.5.2, det(inGLc(z)) = inF detLc(z) and this determinant is nonzero since

inF (detLc(z)) has a term whose support is s.

Recall from Section 4.2 that a face of a pyramid is apical if it contains the apex of the pyramid.

Since the polytope Q = conv(A(Γ) ∪ {e}) is a pyramid, an apical face of Q contains its apex, e.

If the Newton polytope P is full, then P = |W |Q shows P is a pyramid with apex |W |e.

Remark 6.5.4. LetG be an apical face ofQ. Since e ∈ G, inG(λIW ) = λIW . Thus, the determinant

of the facial matrix inG(λIW ) is nonzero. �

Lemma 6.5.5. Suppose P = Newt(Dc) is full. Let G be an apical face of Q such that F = |W |G

is a face of P . Then inFDc = det(inGLc(z)− λIW ).

From now on, we assume the Newton polytope P = Newt(Dc) is full. Let G be a nonvertex

apical face of Q such that F = |W |G is a face of P , and let r ∈ G ∩ Zd+1. By Lemma 6.5.3, the

determinant of the matrix z−rinGLc(z) is nonzero. Let ι be the inclusion C[MF ]W ⊂ C[σ∨F ]W and

π the projection of C[σ∨F ]W onto C[MF ]W . This induces an endomorphism on C[MF ]W

C[MF ]W C[MF ]W

C[σ∨F ]W C[σ∨F ]W .

ι

z−r(Lc(z)− λIW )

π (6.10)

given by the composition π ◦ (Lc(z)− λIW ) ◦ ι.

Lemma 6.5.6. Let G be a nonvertex apical face of Q such that F = |W |G is a face of P , and let

r ∈ G ∩ Zd+1. The action of the endomorphism π ◦ (z−r(Lc(z)− λIW )) ◦ ι on C[MF ]W is given

as multiplication by the matrix z−r(inGLc(z)− λIW ).
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Proof. In using the standard basis of C[MF ]W (which is indexed by u ∈ W ), the endomorphism

π ◦ z−r(Lc(z)−λIW ) ◦ ι becomes multiplication by a |W | × |W | matrix whose rows and columns

are indexed by vertices in W . Its (u, v)-position is given by

− δu,vz−rλ−
∑
u∼a+v

cu∼a+vz
a−r (6.11)

where a ∈ G ∩ Zd+1 and δu,v is the Kronecker symbol. This matrix is z−r(inGLc(z)− λIW ).

Remark 6.5.7. Let G be a nonvertex apical face of Q such that F = |W |G is a face of P , and let

r ∈ G∩Zd+1. By Lemma 6.5.5, det(z−r(inGLc(z)− λIW )) is nonzero. The support of the kernel

of z−r(inGLc(z)− λIW ) is the set

Var(det(z−r(inGLc(z)− λIW ))).

If there exists r′ ∈ G with r′ 6= r, then z−r(inGLc(z) − λIW ) = zr
′−r · z−r′(inGLc(z) − λIW ),

where zr′−r is invertible in C[σ∨F ]. Observe that the kernel of z−r(inGLc(z) − λIW ) is the kernel

of z−r′(inGLc(z)− λIW ), so there is no loss in generality in choosing any r ∈ G ∩ Zd+1. �

Let G be a nonvertex apical face of Q such that F = |W |G is a face of the polytope P . Let

r ∈ (G ∩ Zd+1) r {e} and let π : Zd+1 → Zd be the projection onto the first d factors. By

definition of the Floquet matrix Lc(z), each edge of Γ has a weight inA(Γ). Remove each directed

edge whose weight does not lie in G and add −r to the weights in G. The weights in −r + G

correspond to a set of directed edges EF for a graph ΓF := (V , EF ) called the facial graph of Γ with

respect to r. The weights of the edges of this graph correspond to the operator z−rinGLc(z).

Lemma 6.5.8. Let G be a nonvertex apical face of Q such that F = |W |G is a face of P , and let

r ∈ (G∩Zd+1)r{e}. Then the facial graph ΓF with respect to r ∈ G∩Zd+1 is ZdimF−1-periodic.

Proof. Since G is a nonvertex apical face of Q, so is F . Thus, the face H := F ∩B of F and B is

not empty. Since F is an apical face of the pyramid P and B is a facet of P , H is a facet of F .
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Consider a splitting β : MF/MH −→MF of the exact sequence

0 MH MF MF/MH 0ι π

β

where ι is the inclusion MH ⊂ MF and π is the projection of MF onto MF/MH . Then MF is

the internal direct sum MH ⊕ β(MF/MH) and C[MF ] ' C[MH ] ⊗C C[β(MF/MH)]. Since H

is a face of B, the terms of z−rinGLc(z) lie in C[MH ], and since H is a face of F , MH has rank

dimH = dimF − 1. As the set EF is obtained by removing edges of the graph Γ = (V , E) whose

corresponding weights are not in A(Γ), it follows that ΓF is ZdimF−1-periodic.

Theorem 6.5.9. Suppose the Newton polytope P is full. Let G be a nonvertex apical face of Q

such that F = |W |G is a face of P , and let r ∈ (G ∩ Zd+1) r {e}. Then the facial graph ΓF with

respect to r is a ZdimF−1-periodic, directed graph whose operator z−rinGLc(z) has Bloch variety

BLc ∩ OF .

Proof. It remains to show BLc ∩ OF = Var(det(z−r(inGLc(z)− λIW ))). By Lemma 6.4.2,

BLc ∩ OF = Var(z−|W |rinF det(Lc(z)− λIW ))

= Var(z−|W |r det(inGLc(z)− λIW ))

= Var(det(z−r(inGLc(z)− λIW ))).

where the second equality follows from Lemma 6.5.5. The theorem is proved.

We end this chapter with an example of Theorem 6.5.9.

Example 6.5.10. Let Γ = (V , E) be the Z2-periodic graph depicted in the left side of Figure 6.2. It

has two orbits of vertices and five orbits of edges. Let L be a periodic graph operator on Γ with u

and v as values of the potential at the vertices u and v. Let a, b, c, d and e be the edge weights.

Let A ⊂ Z3 be the support of the dispersion polynomial D. The Newton polytope P =

conv(A) is depicted in the right side of Figure 6.2.
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u

v (1, 0)+v•(−1, 0)+v

(0,−1)+v

(0, 1)+v

•ab

•c

d
•e

W y−2

x−2

λ2

Figure 6.2: A periodic graph and its corresponding Newton polytope, which is full.

LetB be the base of the polytope P . The operator L is an endomorphism on the free C[σ∨B]-module

QWB '
{
ψB ∈ C[x±, y±, λ]V | ψB(w, (r, s, t)) = xrysψB(w, (0, 0, 0))

}
.

Its characteristic matrix is

L(x, y)− λIW =

 u−λ −a−bx−1−cy−1−dx−ey

−a−bx−cy−dx−1−ey−1 v−λ

,
and its dispersion polynomial D = det(L(x, y)− λI2) is

λ2 − (u+ v)λ+ uv − (a2 + b2 + c2 + d2 + e2)− (ab+ ad)(x+ x−1)− (ac+ ae)(y + y−1)−

(bc+ de)(xy−1 + x−1y)− (be+ cd)(xy + (xy)−1)− bd(x2 + x−2)− ce(y2 + y−2).

Let F be the face of the polytope P exposed by the vector (1, 1,−1), and letG be the corresponding

face of F in Q = conv(A(Γ) ∪ {(0, 0, 1)}). By choosing (−1, 0, 0) ∈ G, the endomorphism
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L(x, y)− λIW extends to act on C[σ∨F ]W as multiplication by the matrix

xL(x, y)− xλI2 =

 ux−xλ −ax−b−cxy−1−dx2−exy

−ax−bx2−cxy−d− exy−1 vx−xλ

 .

On C[MF ]W , the action of this endomorphism is multiplication by the matrix

xinG(L(x, y)− λI2) =

 −xλ −b− cxy−1

−d− exy−1 −xλ

 .

By Lemma 6.4.2, x2DF = (xλ)2 +(be+cd)xy−1−bd+ce(xy−1)2 = det(xinG(LF (x, y)−λI2)).

x−2

y−2

λ2

Figure 6.3: A facial graph associated to the facet of a full Newton polytope.

Figure 6.3 shows the corresponding Z-periodic graph ΓF . �
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7. SUMMARY

We investigated the relationship bewteen the Newton polytope of the dispersion polynomial

of a periodic graph operator and its complex Bloch variety. In Chapter 5 we used this Newton

polytope to give criteria when the irreducibility of this dispersion polynomial is preserved after a

change in the period lattice. Chapter 5 is based on published work with Matthew Faust in [12].

In Chapter 6 we compactified this Bloch variety in the normal toric variety associated to the fan

of this Newton polytope. We realized this compactification of the Bloch variety as coming from

an operator that extends to the boundary of this toric variety. Chapter 6 is based on an upcoming

article with Matthew Faust, Stephen Shipman, and Frank Sottile in [13].
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