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ABSTRACT

Many know and love Galois groups, which help us understand the solvability of equations

and the structure of field extensions. What many do not know is that in the first comprehensive

treatise on Galois Theory, Jordan also considered Galois groups in the context of enumerative

geometry. Enumerative geometry concerns counting the number of geometric objects that satisfy

some geometric conditions, such as how many lines are on a nonsingular cubic surface, or how

many plane conics are tangent to five general plane conics. For such problems, Galois groups

describe the symmetries of the solution set. For “interesting" examples, the Galois groups are

called enriched, because they additionally encode geometric structure inherent to the problem. We

describe and build upon the current state of classifying and computing enriched Galois groups in

Schubert calculus, a branch of enumerative geometry where all geometric objects and conditions

involved are restricted to be linear spaces.

We develop the theory from first principles, starting from solving equations one might en-

counter in high school, and moving through solving more difficult equations and systems of equa-

tions, naturally developing algebraic structures along the way. We review the fundamentals of

algebraic geometry, and define Galois groups in enumerative geometry as monodromy groups of

branched covers.

With proper tools in hand, we describe the Schubert calculus framework. We explain how

to formulate Schubert problems in Grassmannians and partial flag varieties of various types. We

share the state of the art for classifying and computing Schubert Galois groups, which involves the

work of Derksen, Vakil, and Sottile (with collaborators), as well as give current conjectures.

Finally, we develop a Macaulay2 package, which computes not just the number of solutions

to a Schubert problem, but also the ideal defining the system of polynomial equations in local

coordinates. Such ideals can then be used to further study Schubert problems further (including

arithmetic and reality questions). We implement the Frobenius algorithm, which we then use to

investigate Schubert Galois groups in many settings.
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1. GALOIS GROUPS IN ENUMERATIVE GEOMETRY

1.1 Equations and Algebraic Structures

Fundamental to mathematics is the notion of an equation. For example, students in school

consistently practice solving equations such as 10x+20 = 200−10x, or −4.9t2+19.6t+58.8 = 0.

The equation 10x + 20 = 200− 10x is like a balanced scale, where the strategy is to perform

a sequence of arithmetic operations to both sides of the equation, at each step resulting in a new

equation that is equivalent to the one before. Adding 10x to both sides results in 20x+ 20 = 200,

and then subtracting 20 from both sides yields 20x = 180. Finally, dividing both sides by 20 gives

the final answer of x = 9. Students get incredibly efficient at employing this algorithm!

On the other hand, to solve −4.9t2 + 19.6t+ 58.8 = 0, one must use a different strategy. One

could use the quadratic formula t = −b±
√
b2−4ac
2a

with a = −4.9, b = 19.6, and c = 58.8, obtaining

the correct final answers of t = −2 and t = 6. Alternatively, one could divide both sides by −4.9

to get the equivalent, but simpler, equation t2 − 4t− 12 = 0, which can be solved by factoring to

get (t+ 2)(t− 6) = 0, with the same solutions t = −2 and t = 6 as before.

These equations can also be interpreted geometrically. From this perspective, solving the equa-

tion 10x + 20 = 200 − 10x is the same as asking for the x-coordinate of the point where the two

lines with equations y = 10x + 20 and y = 200 − 10x intersect. Similarly, solving the equation

−4.9t2 + 19.6t + 58.8 = 0 is analogous to asking where the parabola y = −4.9t2 + 19.6t + 58.8

crosses the x-axis (intersects the line y = 0).
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While students get incredibly efficient at solving equations, and have some idea as to how to

visualize them geometrically, one question often persists - “why?". Why should one even care

about equations and solutions in the first place? Why spend so much time and energy in school

drilling algorithms when there seem to be more interesting and useful pursuits?

What many do not understand is that equations describe and quantify relationships! For ex-

ample, consider Eleanor (today age six) and Soren (today age three), whose ages will of course

change over time. One could introduce variables to quantify these ages, defining Eleanor’s age to

be y and Soren’s age to be x. Equations can then be used to describe how the ages y and x are re-

lated. The equation y = 100x would not relate Eleanor’s and Soren’s ages since it is not currently

true, and y = 2x would also not be a good equation to relate the ages, because even though it is

true in the moment, next year when Eleanor is seven and Soren is four, the equation will no longer

hold. Instead, the equation y = x+3 is much more useful, and quantifies the relationship “Eleanor

is three years older than Soren." Defining variables and using equations to relate those variables is

called “modeling", and there is a famous statement in mathematics that “all models are wrong, but

some are useful". The equation y = x + 3 is useful enough, but admittedly if Eleanor and Soren

do not have the same birthday, there will be times (shorter than a year) when one age increases

before the other one does (i.e. Eleanor turns seven before Soren turns four), invalidating the equa-

tion. One could then refine the model to account for a need for greater precision (changing units

from years to months or days, for example), or one could be sufficiently pleased with the equation

for how one desires to use it. Either way, the equation itself “does not remember" the real world

situation that it was chosen to model, math “living in a world of its own". One can possibly use

math algorithms to solve an equation, but it is essential for the user to interpret the solutions in the

context of the original problem to make sure that the results make sense and are useful. Whether

students like it or not, equations are regularly used by many professionals in their careers, because

people care about objects/ideas/etc. which are related to one another in quantifiable ways.

One possible application for the equation 10x+ 20 = 200− 10x is to economics. Say there is

an item being sold in the marketplace, and past market data reveals that y = 10x+20 relates price
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(y) to the supply (x) of that item, while y = 200 − 10x relates price (y) to the demand (x) of that

item. Solving the equation 10x + 20 = 200 − 10x then gives x = 9 as the equilibrium quantity,

with y = $110 as the equilibrium price for that item. In other words, when 9 items are made and

sold for 110 apiece in the market, all the items are sold with no other items desired by consumers,

resulting in no waste or lost opportunity cost for the market as a whole.

On the other hand, the equation y = −4.9t2 + 19.6t + 58.8 = 0 could arise in the context of

kinematics in physics, like a ball being launched directly upward with initial velocity of 19.6m/s2

from an initial height of 58.8m. Here t is time (in seconds), y is the height of the ball, and the

model is ignoring some factors such as wind resistance. In this case, the solution t = 6 to y = 0

reveals that it would take precisely 6 seconds for the ball to hit the ground under the given model,

which one could experimentally verify. The other solution, t = −2 is extraneous, since time cannot

be negative in the context of the given application.

While applications such as the examples given help describe why equations are useful in some

careers, students rarely ask other “why" questions about equations, like why do the algorithms they

drill so hard work? Why does performing certain arithmetic operations to both sides of an equation

successfully cancel terms, allowing one to get closer to the answer with each step? Why do certain

formulas and techniques give a solution? These questions concern the theory of mathematics, and

are surprisingly deep. Perhaps surprisingly, abstraction is the key to understanding the answers to

these kind of “why" questions.

1.2 Groups

Consider solving the simplest possible type of equation involving addition of real numbers:

a + x = b. Here x is an unknown real number, while a and b are fixed real numbers (so for

example, if a = 2 and b = 1, then we consider the equation 2 + x = 1). To solve:

1. Add −a to both sides: −a+ (a+ x) = −a+ b

2. Move the parentheses: (−a+ a) + x = −a+ x

3. Cancel the −a and a: 0 + x = −a+ b
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4. Remove the 0 to get the final answer: x = −a+ b

Similarly, consider solving the simplest possible type of equation involving the multiplication

of real numbers: a · x = b (where this time, we need a ̸= 0). Again, notice the process for solving:

1. Multiply 1
a

to both sides: 1
a
· (a · x) = 1

a
· b

2. Move the parentheses: ( 1
a
· a) · x = 1

a
· b

3. Cancel the 1
a

and a: 1 · x = 1
a
· b

4. Remove the 1 to get the final answer: x = 1
a
· b

In both cases, we have an equation of the form a ∗ x = b, where a, b, and x are elements in

some set (real numbers in our first example, and nonzero real numbers in the second example), and

where ∗ is some binary operation that combines two elements of the set to give another element of

that set (in our examples, ∗ is + and ·). To solve the equations, we first needed the existence of

inverse elements (−a for addition, and 1
a

for multiplication). Second, we needed to be able to move

parentheses, also known as the associative law for addition and multiplication. Third, the whole

point of having inverse elements and moving parentheses is to cancel something, but what does

that mean? By definition, the inverse of an element should combine with that element to become

an identity element, and so we need the existence of such an identity element (0 for addition, and 1

for multiplication). Finally, the identity element by definition should combine with other elements

in a way that leaves them alone. For the general setup a ∗ x = b, if we denote the inverse of a as

a−1 and the identity element as e, then the process for solving becomes:

1. Use the binary operation ∗ to combine a−1 with both sides: a−1 ∗ (a ∗ x) = a−1 ∗ b

2. Move the parentheses: (a−1 ∗ a) ∗ x = a−1 ∗ b

3. Cancel the a−1 and a: e ∗ x = a−1 ∗ b

4. Remove the e to get the final answer: x = a−1 ∗ b.
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Definition 1.2.1. A group is a set G equipped with a binary operation ∗ : G×G→ G such that

1. ∗ is associative: For all g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3

2. G has an identity element e: For all g ∈ G, e ∗ g = g

3. Every element ofG has an inverse: For all g ∈ G, there exists g−1 ∈ G such that g−1∗g = e.

Hence, as we have seen above, the set of real numbers R is a group under addition, and the set

of nonzero real numbers R \ {0} is a group under multiplication. On the other hand, R is NOT a

group under subtraction, since subtraction is not associative: 3− (2− 1) = 2 ̸= 0 = (3− 2)− 1.

Additionally, the natural numbers N = {0, 1, 2, . . .} is NOT a group under addition, since while

addition is associative and N has 0 as an additive identity, no element (besides 0) has an additive

inverse. Hence, one cannot solve all equations like a + x = b purely in the world of the natural

numbers. For example, 2 + x = 1 has no solution in N. One has to “extend" the world of the

natural numbers to a group, like the integers Z (the minimal such extension) or real numbers, to

solve such equations.

Now, not all groups arise in mathematics as sets of numbers. Additionally, the groups above

are infinite (as sets, they have infinite cardinality), but from now on, we will primarily be focusing

on finite groups. We call the cardinality of a finite group the order of that group. Perhaps the most

important family of finite groups are the symmetric groups, which have actually have functions as

elements. We denote the subset {1, . . . , n} ⊆ N by [n] throughout.

Definition 1.2.2. The symmetric group on n letters is Sn = {bijections f : [n] → [n]}, equipped

with composition of functions ◦ : Sn × Sn → Sn as a binary operation.

A bijection means an invertible function, and since we are considering such a function from [n]

to itself, a bijection is equivalent to a permutation of the numbers 1 through n. Thus, the order of Sn

is |Sn| = n!, which while potentially quite large, is finite. For example, there are 6 permutations of

the numbers 1, 2, and 3, so S3 = {123, 132, 213, 231, 312, 321}, where here we are using “one-line

notation", meaning if f = 213, f(1) = 2, f(2) = 1, and f(3) = 3. With this notation (somewhat

unconventional, but important for our purposes), Id[3] = 123.
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Since the composition of bijections is a bijection, ◦ is a well defined binary operation on Sn.

Furthermore, function composition is associative. The identity function, denoted here by Id[n], is

an identity element for Sn, and by definition each bijection f has an inverse function f−1 such that

f ◦ f−1 = f−1 ◦ f = Id[n]. Therefore, the symmetric group Sn, really is a group as defined above!

Hence, if x : [n] → [n] were an unknown bijection, but f, g ∈ Sn were known, one could solve

equations of the form f ◦ x = g, using the fact that Sn is a group.

There are many situations where we want to consider some groups as “the same", even if they

are not presented to us in precisely the same way. For example, the group S{a,b,c} = {bijections f :

{a, b, c} → {a, b, c}}, equipped with function composition, should be considered “the same" as

S3 above. To make this notion precise, we introduce the notions of group homomorphisms and

isomorphisms. Here we introduce the notation (G, ∗) to mean the group G has ∗ as its binary

operation.

Definition 1.2.3. Let (G, ∗) and (H, ⋄) be groups. A group homomorphism φ : G → H is a

function such that for all g1, g2 ∈ G, φ(g1 ∗ g2) = φ(g1) ⋄ φ(g2). A group isomorphism is a

bijective group homomorphism. If such a group isomorphism exists, we say that G and H are

isomorphic as groups.

The idea is that a group homomorphism “preserves" the group structure between the two sets.

For example φ : S3 → S{a,b,c} given by φ(f)(a) = f(1), φ(f)(b) = f(2), and φ(f)(c) = f(3) is

an isomorphism. It is really just a relabeling, replacing every instance of 1 with a, 2 with b, and

3 with c, and so will satisfy the group homomorphism property trivially. Such a relabeling is not

unique, but just having one establishes that S3 and S{a,b,c} are isomorphic groups.

For a more interesting example, we again return to geometry! In fact, groups often arise as

a set of symmetries (bijections preserving relevant structure) of geometric objects! For example,

consider a fixed equilateral triangle in the plane. By a symmetry of the triangle, we mean a rigid

motion (isometry) that preserves the triangle. In other words, the points of the triangle may indi-

vidually move and change position, but the overall triangle shape is preserved. In this case, one can

show that the only symmetries that arise are certain reflections and rotations, as shown in the figure
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Figure 1.1: Symmetries of the Triangle

below. Notice that if we label the vertices of our fixed triangle as 1, 2, and 3, each symmetry results

in a permutation of these vertices, and in fact all 6 permutations arise in this way! Here we see

another way to view the group S3, where each symmetry (rotation or reflection) is identified with

the corresponding permutation of vertices which it causes. This is a homomorphism (and since

bijective, an isomorphism), since each permutation associated to a composition of symmetries is

the same as the composition of the associated permutations.

Another important concept that naturally arises from this example is that of a subgroup. In fact,

it is the statement of Cayley’s Theorem that every finite group is isomorphic to a subgroup of Sn

for some n. Hence, subgroups allow us to view every finite group as a group of some, but perhaps

not all, permutations.

Definition 1.2.4. Let (G, ∗) be a group. A subset H ⊆ G is a subgroup if H is a group when

equipped with the restriction of ∗ to H as a binary operation.

In particular, a subgroup H must be closed under the binary operation ∗, contain the identity

e of G (which will still be the identity in H), and be closed under inverses. The identity alone

{e} and G itself are always subgroups of G. From our example above of S3, viewed as the rigid

motion symmetries of an equilateral triangle, what if we only cared about rotational symmetries?
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Then we only get 3 permutations of the vertices of the triangle instead of 6. Since rotating 120◦

counterclockwise twice is the same as rotating by 240◦, and three times (360◦) is the same thing as

doing nothing (the identity symmetry), the subgroup is said to be “generated" by the 120◦ rotation

element, and we call the group “cyclic".

Definition 1.2.5. A group G is cyclic if there exists g ∈ G, called a generator for G, such that

G = {gn|n ∈ Z}, where here gn = g∗g∗. . .∗g (n times) if n is positive and gn = g−1∗g−1∗. . .∗g−1

(−n times) if n is negative (g0 = e).

There are two possibilities for a cyclic group: (1) Each gn is distinct, in which case the group is

countably infinite, and in fact isomorphic to Z under addition (via k goes to gk, since gk ∗gl = gk+l

by definition), or (2) There exists a minimal n ∈ N such that gn = e, so the cyclic group is finite of

order n. In this second case, the cyclic group is isomorphic to Z/nZ, the integers modulo n under

modular addition, since gk ∗ gl = gk+l = g(k+l mod n). Hence, in the example of restricting to

only rotational symmetries described above, we have a subgroup of S3 that is isomorphic to Z/3Z.

Similarly, we get three cyclic subgroups of S3 isomorphic to Z/2Z, each generated by a single

reflection, since reflecting twice across the same axis returns the triangle to its original position.

Cyclic groups have the additional property that elements commute with respect to the binary

operation, since gk ∗gl = gk+l = gl+k = gl ∗gk. While this property is not required to solve simple

equations like a ∗ x = b or x ∗ a = b, it is very desirable, and so such groups are called “abelian"

(named after the Norwegian mathematician, Niels Abel).

Definition 1.2.6. A group (G, ∗) is abelian if ∗ is commutative: for all g, h ∈ G, g ∗ h = h ∗ g

S3 is actually the smallest group that is NOT abelian: 213 ◦ 231 = 132 ̸= 321 = 231 ◦ 213,

for example. In other words, reflections and rotations do not have to commute with one another.

On the other hand (R,+) is abelian, but not cyclic (for any real number a, {na|n ∈ Z is a cyclic

subgroup, but not all of R itself).

In contrast to the symmetries of the triangle, consider the symmetry group of a square, this time

labeling the vertices a, b, c, and d (see the figure below). Again, we can consider rotations and
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Figure 1.2: Symmetries of the Square

reflections that preserve the square, and the corresponding permutations of the vertices. However

this time, not every permutation of the vertices arises (only 8 permutations instead of 24), resulting

in a proper subgroup D4 of S4. D4 is called the dihedral group of order 8. In fact, there is

a geometric obstruction to obtaining all 24 possible permutations of the vertices, since diagonal

pairs of vertices have to be preserved under reflections and rotations. Since the symmetry group,

D4, is not the entire symmetric group, S4, we call such a symmetry group enriched, because it

encodes interesting geometry that must be preserved by the transformations we are considering.

We also again obtain the cyclic subgroup isomorphic to Z/4Z generated by 90◦ clockwise rotation.

In general, for the rigid motion symmetries of the regular n-gon, we will always get a subgroup

Dn ⊆ Sn, called the dihedral group of order 2n. Restricting to rotational symmetries only, we

obtain a subgroup isomorphic to Z/nZ ⊆ Sn.

Moving on to 3-dimensions, we can similarly ask for the rotational symmetry groups of the five

Platonic solids: the tetrahedron, cube (hexahedron), octahedron, dodecahedron, and icosahedron.

This time, for each of the platonic solids, we will label the sides (think of them as dice), and

again we will consider rotations permute this labeling. For the tetrahedron, there are four choices

for which triangular side is the base, and then three rotations with that fixed base that preserve the
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Figure 1.3: The Platonic Solids

shape of the tetrahedron. Hence, there are (4)(3) = 12 permutations (half of the 24 possible), and

so again we get a proper subgroup A4 of S4, called the alternating subgroup of S4. In general,

a permutation in Sn can be assigned a “sign" (even or odd), and half of the permutations in Sn

are even, and half are odd. Similarly to how multiplication of even natural numbers is even, the

composition of even permutations is an even permutation. The identity permutation is also even,

and the inverse of an even permutation is always even. Hence, for any n, there is the subgroup of

all even permutations, An ⊆ Sn, called the alternating subgroup of Sn.

By a similar process, the cube has 24 permutations: there are six choices for which side is “on

top" (what you would say you obtained by “rolling the dice"), and for each choice, four rotations

that preserve the cube, so 24 = (6)(4). In fact, the rotational symmetry group of the cube is

isomorphic to S4, viewed as a subgroup of S6.

Platonic solids come in dual pairs (see Figure 1.4), by taking the convex hull of the midpoint

of every side, forming a new Platonic solid with number of vertices and number of sides swapped

with those values of the Platonic solid you started with. This truly is a duality, since repeating the

process twice gets one back to the Platonic solid one started with. Furthermore, rotations preserve

both Platonic solids in precisely the same way (viewing one inscribed inside the other), and so
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Figure 1.4: Duality of Platonic Solids

dual Platonic solids will have the same symmetry groups. The tetrahedron is self-dual, the cube

and octahedron are dual, and the dodecahedron and icosahedron are dual. Therefore, the symmetry

group of the octahedron is also isomorphic to S4, but this time viewed as a subgroup of S8.

By the same process as for the tetrahedron and the cube, the symmetry group of the dodeca-

hedron has 60 permutations, since there are 12 choices of sides that could be “on top", and five

rotations for each (since the sides are pentagons), so 60 = (12)(5). In fact, this symmetry group

is isomorphic to A5, but viewed as a subgroup of S12. Finally, by duality, the symmetry group

of the icosahedron is also isomorphic to A5, but viewed as a subgroup of S20. In all five cases,

again we obtain enriched symmetry groups, revealing how “special" the geometric objects under

consideration are.

Before moving on to more difficult equations that require more algebraic structure than that of

a group, we conclude with a few advanced group-theoretic notions that we will need later. One

should feel free to skip the rest of this section, and refer back to it as needed.

Definition 1.2.7. Let (G, ∗) be a group. A subgroup N ⊆ G is said to be a normal subgroup,

denoted N ⊴ G, if for all n ∈ N and g ∈ G, gng−1 ∈ N . A group G is said to be a simple

group if it has no non-trivial, proper normal subgroups. If N ⊆ G is a subgroup, one obtains an

equivalence relation ∼ on G where g ∼ h if g−1 ∗h ∈ N , and the equivalence class of g is denoted

by gN for all g ∈ G. The set of equivalence classes is denoted by G/N , and if further N ⊴ G,

G/N has the structure of a group, called a quotient group. Here the binary operation is given by

(gN) ∗ (hN) = (g ∗ h)N (which requires N to be normal to be well-defined), the identity is eN
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(where e denotes the identity in G), and the inverse of gN is g−1N .

Definition 1.2.8. Every finite group G has a composition series, which is a chain of normal sub-

groups (each normal in the next, not necessarily in G) {e} = H0 ⊴ H1 ⊴ · · · ⊴ Hn = G, with

strict inclusions, such that each factor group Hi+1/Hi is simple. The factor groups are called

composition factors, n is called the composition length. By the Jordan-H older Theorem, any

two composition series of a group are equivalent: the have the same composition length and the

same composition factors, up to permutation and isomorphism. For a finite group G, if the factor

groups are all cyclic of prime order (isomorphic to Z/pZ for some prime p), then we say that G

is a solvable group. This is equivalent to the usual definition of solvable groups where the factor

groups are required to be abelian, since the only abelian simple groups are cyclic of prime order.

Definition 1.2.9. Let p be a prime. A p-group is a finite groupG with order a power of p: |G| = pk

for some k. For any finite group G, a Sylow p-subgroup is a maximal p-subgroup of G, i.e. it is

a p-group, and not contained in any other p-group contained in G. In other words, if |G| = pKm

with p ∤ m, then a Sylow p-subgroup is a subgroup of G of order pK .

A p-group G has the special property that if |G| = pk, then G has normal subgroups of order

pm for all 1 ≤ m ≤ k. Additionally, there is a theorem, called the First Sylow Theorem (which we

write here without proof), that asserts that for any prime p | |G|, for G a finite group, there exists a

Sylow p-subgroup of G.

1.3 Fields

To make sense of solving equations of the form a ∗ x = b, we needed the notion of a group.

What if we moved beyond these simplest possible equations, to simple equations which involve

two binary operations, like ax + b = cx + d? Here we could have written something abstract

again, such as a ⋄ x ∗ b = c ⋄ x ∗ d, but for simplicity we will just write addition and multiplication

in the standard simplified way, with the understanding that the two operations are abstract and

that we are not necessarily discussing these familiar operations, or working over a number system

like R. Here notationally we use “brackets" interchangeably with parentheses for readability: so
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((a+ b) + c) = [(a+ b) + c], for example. To solve such an abstract system (where a ̸= c, or else

there would be nothing to solve):

1. We need an additive inverse for cx, say −cx. Add −cx to both sides on the left: −cx+(ax+

b) = −cx+ (cx+ d).

2. We need + to be associative, so we can move the parentheses on both sides: (−cx+ax)+b =

(−cx+ cx) + d

3. We need an additive identity, say 0: (−cx+ ax) + b = 0 + d =⇒ (−cx+ ax) + b = d

4. Again, we need an additive inverse for b, say −b. Add −b to both sides on the right: [(−cx+

ax)+b]+(−b) = d+(−b) =⇒ (−cx+ax)+[b+(−b)] = d+(−b) =⇒ (−cx+ax)+0 =

d+ (−b) =⇒ −cx+ ax = d+ (−b) (using our associativity and identity for + as before)

5. We need our two operations to satisfy the distributive law with respect to one another: (−c+

a)x = d+ (−b)

6. We need a multiplicative inverse for −c + a, say (−c + a)−1: (−c + a)−1[(−c + a)x] =

(−c+ a)−1[d+ (−b)]

7. We need our multiplication to be associative: [(−c+a)−1(−c+a)]x = (−c+a)−1[d+(−b)]

8. We need a multiplicative identity, say 1: 1x = (−c + a)−1[d + (−b)] =⇒ x = (−c +

a)−1[d+ (−b)], which is our solution!

If we further want to solve similar equations such as ax + b = d + cx (like the equation

10x + 20 = 200 − 10x in the introductory section to this chapter), we would also need + to be

commutative. At the same time, equations like ax + b = xc + d would also necessitate for our

multiplication to be commutative as well. With all the properties listed so far, one could solve any

linear equation in one variable, motivating our definition of a field:
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Definition 1.3.1. A field is a set F , equipped with two binary operations + : F × F → F and

· : F × F → F , such that (F,+) and (F \ {0}, ·) are abelian groups, satisfying the distributive

law: For all a, b, c ∈ F , a(b+ c) = ab+ ac.

Note that earlier we mentioned how (R,+) and (R \ {0}, ·) are groups. Since they are each

abelian (“traditional" addition and multiplication are commutative), and the distributive law holds

in R, R is a field. However, the natural numbers N and integers Z are not fields: we already

mentioned that (N,+) is not a group, and even though (Z,+) is an abelian group, (Z \ {0}, ·)

is not (it doesn’t have multiplicative inverses). As a result, in Z we cannot solve equations like

2x = 1. To remedy this, we again “expand our world" and obtain the rational numbers Q, the

minimal field containing Z, obtained by adding solutions to all equations ax = b for a, b ∈ Z

(a ̸= 0).

All of the above mentioned examples of fields are infinite, but there are finite fields as well. As

a family of examples, Fp = Z/pZ is a field for every prime p, where the operations are modular

addition and multiplication.

1.4 Polynomial Equations and Rings

As long as one is working over a field, linear equations can be solved. But what about polyno-

mial equations, such as −4.9t2 + 19.6t + 58.8 = 0, where the coefficients in this case come from

R? In general, we consider polynomial equations where the coefficients come from some field.

Definition 1.4.1. A single-variable polynomial f over a field F is f = adx
d + ad−1x

d−1 + · · · +

a1x + a0 for some d ∈ N (called the degree of f ), and for some ad, . . . , a0 ∈ F . If the degree is

not specified, we may write f =
∑
aix

i, where it is understood that all ai = 0 for i greater than

the degree of f , whatever that may be. Two polynomials are defined to be equal,
∑
aix

i =
∑
bix

i,

if and only if ai = bi for all i. The set of all single-variable polynomials over F is denoted F [x],

called the polynomial ring over F .

The set of polynomials F [x] also has addition and multiplication binary operations: If f =∑
aix

i and g =
∑
bix

i, f + g =
∑

(ai + bi)x
i, and fg =

∑
(
∑

k+l=i akbl)x
i. The set (F [x],+)
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is in fact an abelian group, but (F [x], ·) is not, with the only axiom not being satisfied being that

polynomials do not in general have multiplicative inverses (unless the degree d = 0, in which

case f = a0 ∈ F \ {0}). However, this is fine, because we are not at this time interested in

solving equations of the form fx = g, where x ∈ F [x] is unknown, but instead are trying to solve

equations of the form f(x) = 0, where f ∈ F [x].

Instead, we say that sets like Z and F [x], which are additive abelian groups with a compatible

multiplication, are “rings" (in fact, integral domains), hence the name for F [x].

Definition 1.4.2. A ring is a set R, equipped with two binary operations + : R × R → R and

· : R×R → R, such that (R,+) is an abelian group, and for all r, s, t ∈ R,

1. Multiplication is associative: r(st) = (rs)t

2. The distributive laws are satisfied: r(s+ t) = rs+ rt, and (r + s)t = rt+ st

Note that by definition, fields are a special type of ring. In general, rings can exhibit behavior

different than that of Z and F [x]. For example, with modular addition and multiplication Z/nZ is

a ring for all n, but if n is composite, say n = ab (so a, b ̸= 1), then ab = 0 mod n, but a, b ̸= 0

mod n. In this case, we call a, b mod n ∈ Z/nZ zero-divisors. Nonzero zero-divisors, or two

nonzero elements multiplying together to be 0 (the additive inverse), cannot occur in fields, Z, or

F [x], which are “integral domains".

Definition 1.4.3. An integral domain is a ring (R,+, ·) such that for all r, s ∈ R:

1. Multiplication is commutative: rs = sr

2. There exists a multiplicative identity 1 ∈ R: 1r = r

3. There are no non-zero zero divisors: If rs = 0, then r = 0 or s = 0

Like with groups subring is a subset that is a ring with the restricted binary operations.

An example of a ring that doesn’t satisfy any of the additional axioms of an integral domain is

R = M2(2Z), 2 × 2 matrices with even integers as entries (matrix multiplication doesn’t have to
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commute, the identity matrix doesn’t have even entries, and two non-zero matrices can multiply to

be the zero matrix). R is a subring of M2(R), all 2× 2 matrices with real entries, which does have

the identity matrix as multiplicative identity. Note that some authors prefer to have the definition

of a ring include the existence of a multiplicative identity to avoid examples like M2(2Z), in which

case they would consider what we call a ring without multiplicative identity a “rng" (pronounced

“wrong", since the “i", the identity, is missing).

If one has a ring R, it is also possible to consider all single-variable polynomials over R, with

the same binary operations as before, since inverses were not involved. In this case we denote the

set of all such polynomials as R[x].

Like groups, there are also homomorphisms and isomorphisms of rings. Below we use the

same convention for addition and multiplication as our abstract binary operations for two rings

at the same time, with the understanding that these operations are likely different across the two

rings.

Definition 1.4.4. Let R and S be rings. Then, a ring homomorphism φ : R → S is a function

such that for all r1, r2 ∈ R:

1. φ(r1 + r2) = φ(r1) + φ(r2)

2. φ(r1r2) = φ(r1)φ(r2)

3. If R and S further have multiplicative identities, φ(1) = 1.

A ring isomorphism is a bijective ring homomorphism, and we say two rings R and S are isomor-

phic if there is an isomorphism between them. A field homomorphism (isomorphism) is a ring

homomorphism (isomorphism) φ : R → S, where both R and S are fields.

Since every field F has a multiplicative identity 1, one can consider the sequence (1, 1 + 1,

1 + 1 + 1, . . .) in F . There are two possibilities for this sequence of elements of F : either every

element is distinct, or at some point the sequence repeats an element. If there is a repeat, one can

solve the equation 1 + 1 + · · · + 1 (n times) = 1 + 1 + · · · + 1 (m times) (say m > n) to obtain

1 + 1 + · · ·+ 1 (m− n times) = 0. This gives rise to the following definition.
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Definition 1.4.5. The characteristic of a field F is the minimal number n such that 1+1+· · ·+1 =

0. If no such n exists, we say that F has characteristic 0.

If F has characteristic 0, F contains an isomorphic copy of the rational numbers Q, given by

the isomorphism (onto its image) φ : Q → φ(Q) ⊆ F , given by φ(a
b
) = (1 + 1 + · · · + 1)−1(1 +

1 + · · · + 1), where the first sum is b times and the second sum is a times (if either a or b are

negative, replace the corresponding 1’s with −1’s). On the other hand, if the characteristic of F

is n ̸= 0, then n = p for some prime p. This is because if n were composite, say n = kl, then

0 = (1 + 1 + · · ·+ 1) (n times) = (1 + 1 + · · ·+ 1) (k times) · (1 + 1 + · · ·+ 1) (l times), which

implies 0 = (1 + 1 + · · · + 1) (k times) or 0 = (1 + 1 + · · · + 1) (l times), either contradicting

the minimality of n. Hence a field F either has characteristic 0 or prime characteristic. When F

has prime characteristic p, we again have a field isomorphism φ : Z/pZ → φ(Z/pZ) ⊆ F via φ(n

mod p) = 1+ 1+ · · · 1 (n times). Hence, every field F contains a subfield isomorphic to either Q

or Z/pZ, called the prime subfield of F .

We now return to solving equations of the form f(x) = 0, where f ∈ F [x] (F a field).

Solutions to f(x) = 0 are also called the roots of f . For example, consider a right triangle with

both base and height of length 1 and unknown hypotenuse c (see Figure 1.5). By the Pythagorean

Theorem, 12 + 12 = c2 =⇒ c2 − 2 = 0. Here f = c2 − 2 ∈ F [c]. If one were trying to solve

this equation over the rational numbers Q, there would be no solution! The two solutions (over,

say the real numbers R), c = −
√
2 and c =

√
2 require us again to “expand our world", leading

to the notion of a “field extension". In fact, even though the solutions exist in R, the smallest field

extension where the solutions exist is Q(
√
2) = {a + b

√
2 | a, b ∈ Q}, which lies between the

fields Q and R. Note −
√
2 = (0) + (−1)

√
2 ∈ Q(

√
2), so Q(

√
2) contains both roots.

Definition 1.4.6. Let F be a field. A field extension K/F is a field K containing F . If one has

such a field extension K/F , an element a ∈ K is algebraic over F if it is the root of a non-zero

polynomial f ∈ F [x]. An algebraic extension is a field extension K/F where every element of

K is algebraic over F . A field F is algebraically closed if every f ∈ F [x] has its roots in F . An

algebraic closure of a field F is an algebraic extension K/F , where K is algebraically closed.
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Figure 1.5: The square root of two appearing naturally as a length

In our example above, Q(
√
2) is an algebraic extension of Q and the splitting field of x2 − 2 ∈

Q[x], but is not algebraically closed, since for example, it does not contain the roots of x2 − 3.

While R has solutions to all the equations we have considered so far, it does not contain the roots

−i = −
√
−1 and i =

√
−1 of x2 + 1 ∈ Q[x], and so R is not algebraically closed. Instead,

C = R(i) = {a+ bi | a, b ∈ R} is algebraically closed and is the algebraic closure of R (this is the

Fundamental Theorem of Algebra, proven later in section 1.6). On the other hand, Q(i) = {a+bi |

a, b ∈ Q} is the splitting field of x2 + 1 ∈ Q[x], and is countable, unlike the real numbers. The

algebraic closure of Q is denoted by Q, and is called the field of algebraic numbers. Elements

of R like e = limn→∞(1 + 1
n
)n and π = tan−1(1) = 4

∑∞
k=1

(−1)k+1

2k−1
are not algebraic over Q,

and so are called transcendental over Q. Instead, these transcendental elements in R are defined

by limiting processes, and in fact this is how one constructs R as a set of equivalence classes of

Cauchy sequences with terms in Q, involving analysis instead of algebra.

So far in our examples we have only considered quadratic equations (where extensions just

involve adding the square root of some element), but in general constructing the splitting field of

f ∈ F [x] involves the notions of ideals and quotient rings.

Definition 1.4.7. Let R be a ring. An ideal I ⊴ R is a non-empty subset I of R such that for all

f, g ∈ I and r ∈ R, f + g ∈ I and rf ∈ I . For any f ∈ R, one obtains the ideal generated by f ,

(f) = {rf | r ∈ R}. For an ideal I ⊴ R, if there exists f ∈ I such that I = (f), then we say I is

a principal ideal.
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In other words, an ideal I ⊴ R is an abelian subgroup that is closed under multiplication from

its ambient ring R. One motivation for this definition is that when considering solving an equation

f(x) = 0 for f ∈ F [x], any solution will also be a solution of r(x)f(x) = 0 for any r(x) ∈ F [x]

(since F is a field, and thus has no non-zero zero divisors). In other words, finding the roots of f

is equivalent to finding the common roots to all polynomials in the ideal (f).

One can also use ideals to get equivalence relations on a ring R: Given an ideal I ⊴ R, define

the relation ∼ on R by r1 ∼ r2 if r1 − r2 ∈ I (put another way, r1 = r2 + f for some f ∈ I).

One can show that this indeed gives an equivalence relation on R, at which point we denote the

equivalence class of r ∈ R by r + I . As will be shown, this is more than mere notation.

Definition 1.4.8. Let R be a ring, and I ⊴ R an ideal. The quotient ring R/I is the set of

equivalence classes {r + I | r ∈ R}, equipped with binary operations (r1 + I) + (r2 + I) =

(r1 + r2) + I and (r1 + I)(r2 + I) = (r1r2) + I .

One can show that these binary operations are well-defined and satisfy the axioms of a ring,

where the additive identity is I = 0 + I , the additive inverse of r + I is (−r) + I , and if R has

multiplicative identity 1, the multiplicative identity of R/I is 1 + I . Note that the notation R/I

for a quotient ring is identical to the notation K/F for a field extension, which is unfortunate,

but should still be clear from context. However, the the two concepts, while certainly not the

same, are related in a special case relevant to our current discussion. In fact, if f ∈ F [x] is an

irreducible polynomial (meaning it cannot be expressed as f = gh for non-constant g, h ∈ F [x]),

then K = F [x]/(f) is actually a field containing (an isomorphic copy of) the base field F . Hence,

K/F is a field extension, and is how we construct the splitting field of f (a minimal algebraic field

extension containing all the roots of f ).

In the examples we considered earlier, Q(
√
2) = Q[x]/(x2 − 2), Q(i) = Q[x]/(x2 + 1),

and C = R(i) = R[x]/(x2 + 1). For a higher degree example, consider the cubic polynomial

f = 2x3 − 9x2 − 6x + 3 ∈ Q[x], which is irreducible by the Rational Root Test. By Cardano’s

cubic formula, roots of f are x = αk =
3−ωk 3√39−26i−ω2k 3√39+26i

2
(k = 1, 2, 3), where ω− 1

2
+

√
3
2
i is a

primitive 3rd root of unity (so ω3 = 1). The splitting field of f is K = Q(α1, α2, α3) = Q( 3
√
2, ω).
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In general, one can compute a splitting field K for f ∈ F [x] of degree n by constructing a

chain of fields F = K0 ⊆ K1 ⊆ · · · ⊆ Kr−1 ⊆ Kr = K such that each Ki is an extension of

Ki−1 containing a new root of f . Since f has at most n roots, the construction will require at most

n extensions. The algorithm for computing each Ki is given by:

• Factor f = f1 · · · fk into irreducible factors over Ki−1

• Choose any non-linear irreducible factor fi in {f1, . . . , fk}

• Construct Ki = Ki−1[x]/(fi)

• Repeat this process until f splits completely into linear factors.

This process for each extension was dependent on our choice of a non-linear irreducible factor of

f , but in the end K can be shown to be unique up to isomorphism.

We already have discussed that fields are the correct setting for solving general linear equations,

but now we can solve any polynomial equation f(x) = 0 for f ∈ F [x] (F a field) by again

“expanding our world" and passing to the splitting field of f , the smallest field where the equation

can be solved. One can also pass to the algebraic closure of F , F ,where all polynomial equations

f(x) = 0 for f ∈ F [x] can be solved. In the other direction, if you have an element α ∈ F , one

can find a minimal polynomial equation f(x) = 0 with α as a solution.

Definition 1.4.9. Let K/F be a field extension, and let α ∈ K be algebraic over F . Then, the

minimal polynomial mα ∈ F [x] is the monic (leading coefficient is 1) polynomial of least degree

among all f ∈ F [x] having α as a root.

One can show that the minimal polynomial is unique and irreducible. For example, even though

ω = −1
2
+

√
3
2
i is a root of x3 − 1 ∈ Q[x], its minimal polynomial is mω = x2 + x+ 1.

1.5 Galois Extensions and Galois Groups

We are now ready to discuss Galois groups - the central object considered in this work! Galois

groups are groups associated to certain field extensions, called Galois extensions. We build towards

this goal by first introducing important types of field extensions.
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Definition 1.5.1. An algebraic field extension K/F is a normal extension if every irreducible

f ∈ F [x] with a root in K splits into linear factors in K[x]. The normal closure of an algebraic

extensionK/F is the smallest fieldM such that F ⊆ K ⊆M and andM/F is a normal extension.

The algebraic field extensions that we have considered so far are all splitting fields of a poly-

nomial f , and so will be normal since they contain all the roots of f . To help illustrate what can

go wrong, consider f = x3 − 2, which has as roots x = 3
√
2, ω 3

√
2, and ω2 3

√
2 (where again

ω = −1
2
+

√
3
2
i is the primitive 3rd root of unity from before). Then, Q( 3

√
2)/Q is an algebraic field

extension containing 3
√
2, but it is not a normal extension, since it does not contain the other roots

of f , meaning f does not split completely into linear factors over Q( 3
√
2). However, the splitting

field K/Q is still a normal extension, and is the normal closure of the extension Q( 3
√
2)/Q.

Normal extensions are critical for solving polynomial equations of the form f(x) = 0 for

f ∈ F (F a field), since they contain all of the solutions, not just some of them. At the same time,

for our purposes we want distinct solutions, not repeated solutions. This leads to the notion of

separability.

Definition 1.5.2. A separable polynomial is a polynomial f ∈ F [x] (F a field) such that over

the algebraic closure F of F , the roots of f are distinct (so the number of distinct roots of f is

equal to the degree of f ). An algebraic extension K/F is a separable extension if for all α ∈ E,

the minimal polynomial mα is a separable polynomial (so has no repeated roots in any extension

field).

Separability will not actually be a concern for our extensions, since over fields of characteristic

0 or finite fields (which are all that we consider), all field extensions are separable. However, we

include this definition for completeness. Together with normality, separability gives the type of

field extensions best suited for solving equations - Galois extensions. A field automorphism is a

field isomorphism φ : F → F from a field F to itself.

Definition 1.5.3. A Galois extension is a field extension K/F that is both normal and separable.

Equivalently, K is the splitting field of some separable f ∈ F [x]. The Galois group associated
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to a Galois extension is Gal(K/F ) = {field automorphisms σ : K → K | σ|F = IdF}. In

other words, an automorphism σ ∈ Gal(K/F ) has the property that σ(a) = a for all a ∈ F

(it “fixes" the base field F ). Galois groups are also defined for separable extensions K/F as

Gal(M/F ), where M is the normal closure of K. The Galois group of a polynomial f ∈ F [x] is

Gal(f) = Gal(K/F ), where K is the splitting field of f .

From our previous examples, Gal(Q(
√
2)/Q) ∼= Gal(Q(i)/Q) ∼= Gal(C/R) ∼= Z/2Z, where

in each case the only field automorphisms fixing the base field are the identity map, and conju-

gation (
√
2 ↔ −

√
2, i ↔ −i). In the C/R case, this automorphism is also known as complex-

conjugation. Notice how in these examples, the elements of the Galois group permute the roots.

This generalizes to higher degree examples.

Lemma 1.5.4. For any Galois extension K/F and separable polynomial f ∈ F [x] with roots in

K, G = Gal(K/F ) permutes the roots of f .

Proof. If α ∈ K is a root of f = anx
n + · · · + a1x + a0 ∈ F [x], and σ ∈ G, then since σ is a

field automorphism of K fixing F , f(σ(α)) = an(σ(α))
n + · · ·+ a1σ(α) + a0 = σ(anα

n + · · ·+

a1α + a0) = σ(f(α)) = σ(0) = 0. Hence, σ(α) is also a root of f . Since f is separable, and σ is

a bijection, with σ ∈ G arbitrary, G permutes the roots of f .

In other words, the elements of the Galois group of a polynomial Gal(f) fix the coefficients of

the polynomial, but permute its roots, the solutions to f(x) = 0 in its splitting field. Hence, the

Galois group is a subgroup of the permutation group Gal(f) ⊆ Sd, where d is the degree of f , and

so the order of the group is |Gal(f)| ≤ d!. In particular, the Galois group of a polynomial is a finite

group. One can view this Galois group as the “symmetries" of the solution set to the polynomial

equation f(x) = 0, like how we originally viewed some groups as symmetries of certain geometric

objects (here the objects being points on the affine line F .

For more examples, consider f = x3 − 1 ∈ Q[x] and g = x3 − 2 ∈ Q[x]. Then, the splitting

field of f is Q(ω), and the splitting field of g is Q( 3
√
2, ω), where again ω = −1

2
+

√
3
2
i. Both f and

g have degree 3, and so after fixing an ordering of their roots, their Galois groups can be viewed
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as subgroups of S3 (different orderings of the roots give different, though isomorphic, subgroups).

Note that Gal(f) = Gal(Q(ω)/Q) ∼= Z/2Z since the roots of f are 1, ω, and ω2, and 1 ∈ Q

must be fixed by any automorphism. Hence, only ω and ω2 can be permuted. On the other hand,

Gal(g) ∼= S3 is the full symmetric group. The roots of g are 3
√
2, ω 3

√
2, ω2 3

√
2 (fix this order to get

permutations), and every automorphism of Q( 3
√
2, ω) fixing Q is determined by the images of 3

√
2

and ω, making sure that the third power of these images are still 2 and 1, respectively. One gets the

following automorphisms, extended polynomially to the entire field:

1. 3
√
2 → 3

√
2 and ω → ω (induces the identity permutation 123)

2. 3
√
2 → 3

√
2 and ω → ω2 (induces the permutation 132)

3. 3
√
2 → ω 3

√
2 and ω → ω (induces the permutation 231)

4. 3
√
2 → ω2 3

√
2 and ω → ω (induces the permutation 312)

5. 3
√
2 → ω 3

√
2 and ω → ω2 (induces the permutation 213)

6. 3
√
2 → ω2 3

√
2 and ω → ω2 (induces the permutation 321)

Note that in the examples above, there was a strong relationship between the Galois extensions

and the corresponding Galois groups. This is the case in general. Note that by an intermediate field

E of a field extension K/F , we mean that E is a field such that F ⊆ E ⊆ K.

Theorem 1.5.5. (The Fundamental Theorem of Galois Theory) Given a field extension K/F that

is finite and Galois, there is a one-to-one correspondence between its intermediate fields and the

subgroups of its corresponding Galois group Gal(K/F ). Explicitly,

• For any intermediate field E of K/F , we obtain a subgroup Gal(K/E) ⊆ Gal(K/F )

• For any subgroupH ⊆ Gal(K/F ), we obtain an intermediate fieldKH = {α ∈ K | σ(α) =

α for all σ ∈ H}, called the fixed field of H

• This correspondence is one-to-one, so KGal(K/E) = E and Gal(K/KH) = H .
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• The correspondence is inclusion-reversing, meaning that subgroupsH1 andH2 of Gal(K/F )

satisfy H1 ⊆ H2 if and only if KH2 ⊆ KH1

• In particular, K corresponds to the trivial subgroup {0} ⊆ Gal(K/F ), and F corresponds

to the entire Galois group Gal(K/F ).

Returning to our previous example, Q(ω) and Q( 3
√
2) are intermediate fields of the Galois ex-

tension Q( 3
√
2, ω)/Q), with Galois groups Gal(Q( 3

√
2, ω)/Q(ω)) ∼= Z/3Z and Q( 3

√
2, ω)/Q( 3

√
2) ∼=

Z/2Z, both viewed as subgroups of S3. These intermediate fields are the fixed fields of these sub-

groups.

To conclude this section, along with our discussion to solving polynomial equations f(x) = 0

over a field, we discuss formulas for solving such equations. When f has degree 2, solutions

exist over an extension field where certain square roots exist, using the quadratic formula. When

f has degree 3, similarly one can use Cardano’s cubic formula over a field extension containing

i =
√
−1, a primitive cube root of unity ω, and relevant cubic roots. We say that such formulas

allow one to solve quadratic and cubic equations algebraically (using only addition, subtraction,

multiplication, division, exponents, and radicals). One also says that such equations are solvable

by radicals. Though much more complicated of a formula, quartic (degree 4 polynomials) are also

solvable by radicals. On the other hand, using the Fundamental Theorem of Galois Theory, we will

show that there is no such formula for quintics (degree 5 polynomials), or polynomials of higher

degree.

Definition 1.5.6. A polynomial f ∈ F [x] (F a field) is solvable by radicals if there exists a chain

of field extensions F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fm = K such that

1. Fi = Fi−1[αi], where αmi
i ∈ Fi−1 (so αi is a solution to the polynomial equation xmi − a for

some a ∈ Fi−1)

2. K contains the splitting field of f

If F is a field of characteristic 0 (like Q and its algebraic extensions, R, or C), then by the

Fundamental Theorem of Galois Theory, a polynomial f ∈ F [x] is solvable by radicals if and only
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if Gal(f) is a solvable group (equating the subgroups in the composition series of the finite Galois

group of f with the intermediate fields in the chain of field extensions by adding radicals). Since

S2, S3, and S4 are each solvable groups, any polynomial of those degrees is solvable by radicals.

On the other hand, for n ≥ 5, An ⊴ Sn is the only non-trivial, proper normal subgroup (An is

simple), so since there are polynomials f ∈ F [x] with Galois group isomorphic to Sn, in general

polynomials of degree 5 or greater are not solvable by radicals. Thus, there is no general quintic

equation or equation for solving higher degree polynomial equations. However, if f ∈ F [x] has

degree d ≥ 5 with solvable Galois group Gal(f) ⊊ Sd, then the specific polynomial equation

f(x) = 0 is still solvable by radicals.

1.6 Systems of Linear Equations and Abstract Vector Spaces

Now that we’ve fully developed the theory of fields to solve linear equations, and field ex-

tensions to solve polynomial equations, both in one variable, we now consider systems of linear

equations in several variables. Using the methods of elimination and/or substitution, students in

high school learn how to solve systems such as: (the solution is x = 3
2
, y = −1)


2x− 3y = 6

4x+ 5y = 1

(1.1)

In general, a system of linear equations (with m equations in n unknowns, called an m × n

system) is

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm
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In matrix notation, if A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

am1 am2 · · · amn


, x⃗ =



x1

x2
...

xn


, and b⃗ =



b1

b2
...

bm


, then we can

succinctly write the system of linear equations as Ax⃗ = b⃗. In linear algebra, where one usually

encounters such systems for the first time, each aij , xk, and bl are considered to be in R or C, which

are fields. Of course, just like single-variable linear equations, these systems make sense over any

field, and so we will consider this more abstract approach to linear systems. Again, continuing the

theme of this chapter, we will ask “what operations and properties will be required to solve such

systems?" This time, the answer is encapsulated in the notion of a vector space.

Definition 1.6.1. A vector space over a field F is an abelian group (V,+) equipped with a linear

field action · : F × V → V . Elements of V are called vectors and + is called vector addition.

On the other hand, elements of F are called scalars, the action is called scalar multiplication,

and as before for a ∈ F and v ∈ V , we write av for a · v (even though a and v belong to

potentially different sets). By a linear field action, we mean that scalar multiplication satisfies for

all v, v1, v2 ∈ V and a, a1, a2 ∈ F :

1. Scalar addition distributes over the action: (a1 + a2)v = a1v + a2v

2. The action distributes over vector addition: a(v1 + v2) = av1 + av2

3. The multiplicative identity acts as the identity: 1v = v

4. The action is compatible with field multiplication (a type of associativity): (a1a2)v = a1(a2v)

Even considering solving a 2 × 2 system (where say a11 ̸= 0, and label the first equation R1

and the second equation R2) 
R1 : a11x+ a12y = b1

R2 : a21x+ a22y = b2

(1.2)

26



to use the method of elimination (also known as the Gauss-Jordan elimination algorithm, and

which is equivalent to performing row operations on the corresponding augmented matrix (A | b⃗),

the first two steps would be to:

1. Multiply both sides of the first equation by 1
a11

, replacing the first equation with this new

equation in our system. (R1 → 1
a11
R1)

2. Multiply both sides of the new first equation by −a21, and then add this new left hand side

of the first equation to the left hand side of the second equation (and same thing for the right

hand sides). Replace the second equation with the result. (R2 → −a21R1 +R2)

One can check that like balancing single variable equations, the new system has the same

solutions as the previous system. Additionally, one can check that by performing these two steps,

one uses all of the properties of a vector space to obtain the new system


x+ a12

a11
y = b1

a11

(−a12a21
a11

+ a22)y = −a21b1
a11

+ b2

(1.3)

The second linear equation can then be solved for y using the properties of the field F , substi-

tuted for y in the first equation, and then the first equation can also be solved for x using the prop-

erties of the field F . Hence, no additional properties are needed, and a vector space is precisely

the necessary algebraic structure for solving the system. However, unlike equations considered

previously in this chapter, there is still the possibility that no solution exists (if −a12a21
a11

+ a22 = 0,

but −a21b1
a11

+ b2 ̸= 0) or that there are infinitely many solutions (if −a12a21
a11

+ a22 =
−a21b1
a11

+ b2 = 0).

Geometrically, if this system were over R, one could visualize a unique solution as the intersection

point of two lines, and so no solutions corresponds to parallel lines, which never intersect. On the

other hand, the case with infinitely many solutions corresponds to both lines being the same line,

resulting in a “double line", every point of which is a solution. However, the vector space proper-

ties are required for computing a unique solution, if it exists, and still can be utilized to determine

whether the system has no solutions or infinitely many solutions (since the matrix corresponding
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Figure 1.6: A vector in the plane

to our new system after our two steps is in row echelon form). As before, whenever solutions do

not exist, we “expand our world" so that solutions do exist, which is the topic of our next section.

We now consider examples of vector spaces, and start with the namesake of vector spaces:

vectors in the plane. This allows us to view geometric objects in a coordinate-free and coordinate-

dependent manner, motivating the upcoming algebraic geometry.

Consider a plane - not with grid lines or axes like the Cartesian plane high school students are

used to, but more like a blank whiteboard. In that plane, one can consider basic geometric objects

like lines, circles, and triangles. The point is that no equations or variables are necessary - these

geometric objects that we interact with in life exist independent of coordinates. Similarly, one can

consider vectors in the plane, which are arrows with a tail, head, magnitude direction (see Figure

1.6). One confusing thing about vectors is that they are represented in the plane in the same way

that another geometric object is drawn - rays. However, rays are considered to be “one-sided" lines,

where the arrow indicates that the object continues progressing, but this is not the case for vectors.

The head of the vector simply indicates direction, and does not continue - the entire geometric

object is there as pictured.

Now, vectors in physics represent forces - one can imagine an object being “pushed" from the

tail to the head of the vector. The magnitude of the vector measures the strength of the force, and

the direction of the vector gives the direction of the force. The physical location of where the vector

lies in the plane is inconsequential - one translate that vector (without changing its magnitude or

direction), and it is still considered the same vector. With this interpretation in mind, forces can
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Figure 1.7: Parallelogram Law for Adding Vectors

Figure 1.8: Vector addition is associative

be composed. For example, throwing a Wiffle ball outdoors can represent one force, but if there is

wind present, that represents another force. As a result, the Wiffle ball thrown in one direction will

not continue in that direction, nor completely in the direction of the wind either, but somewhere in

between. Hence, we define the addition of vectors to be the vector representing the composition of

forces, given for example by the parallelogram law.

From this definition, one can see readily that vector addition is commutative. Similarly, one

can see that vector addition is associative.

Furthermore, there is a “0-vector" 0⃗, which looks like a point and has 0 magnitude, which is

an additive identity among vectors in the plane. For any vector v⃗ in the plane, one can rotate that

vector 180◦ to get −v⃗ so that it has the same tail and magnitude, but is pointing in the opposite

direction. This −v⃗ is an additive inverse for v⃗, since (−v⃗) + v⃗ = 0⃗. Hence, the set of vectors in
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the plane form an abelian group - but this is not all! One can also scale a vector in the plane by

a real scalar c ∈ R: If that scalar is positive, cv⃗ points in the same direction, but its magnitude is

multiplied by c. If that scalar is negative, cv⃗ points in the opposite direction, and its magnitude

is multiplied by |c|. In particular, 1v⃗ = v⃗, (ab)v⃗ = a(bv⃗), and scalar multiplication and addition

satisfy the distributive laws. Therefore, the set of vectors in the plane form a vector space! Note

that there is no natural multiplication operation for vectors, so this is truly all of the algebraic

structure that we obtain. As a result of being a vector space, one can solve systems of linear

equations involving vectors in the plane.

Now linear algebra is not just the study of vector spaces, but also the study of linear transfor-

mations between vector spaces. Since a vector space has vector addition and scalar multiplication

as operations, linear transformations are functions that respect this structure.

Definition 1.6.2. Let V and W be vector spaces over the same field F . Then, a linear transfor-

mation L : V → W is a function such that for all v, v1, v2 ∈ V and c ∈ F ,

1. L(v1 + v2) = L(v1) + L(v2)

2. L(cv) = cL(v)

If L : V → W is a bijective linear transformation, then we call it an isomorphism of vector

spaces, and that V and W are isomorphic as vector spaces, denoted V ∼= W .

For vectors in the plane, some possible linear transformations are rotations and reflections. One

can see that from the parallelogram law definition of vector addition, it does not matter if one adds

vectors first, and then transforms the result, or if one transforms the vectors separately first, and

then add them together - both give the same result. Similarly, scaling before or after a rotation or

reflection does not matter - the result is the same. This is the flavor of how linear transformations

work in general.

Now, while vectors in the plane and linear transformations between them can be fully described

without coordinates, it is often useful to introduce coordinates to do hands on calculations. For

example, it is easier to do vector calculations on a computer using coordinates rather than having
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the computer draw vectors, move them around, and such. We just caution that coordinates give a

representation of vectors in the plane, and are not inherently what the vectors are. This is similar to

how numbers can be conveniently represented in the decimal (base 10) system, but there are many

other representations of numbers that could have alternatively been used (like binary or Roman

numerals for example). Regardless of how one represents numbers, what they really represent

is quantity, and similarly vectors in the plane represent quantities with magnitude and direction.

As another geometric example, circles are completely defined as the set of points a fixed distance

(radius r) away from a given point (its center). This does not require coordinates, and circles

can be physically constructed from a ruler and compass, for example. However, if one introduces

Cartesian coordinates in the plane, the center now is given by some point (h, k), and the circle can

be (via the Pythagorean Theorem) described as the solutions to the equation (x−h)2+(y−k)2 = r2.

But this equation is not what the circle is, just a way to represent such a circle. Changing the

coordinate system would change the equation, and the same is true for vectors.

Choosing a unit of measurement (like inches, for example), there are two distinguished vectors

in the plane, the vector i⃗ which has magnitude 1 and is perfectly horizontal (with arrow pointing

to the right), and the vector j⃗ which has magnitude 1 and is perfectly vertical (with arrow pointing

up). Then, every vector v⃗ in the plane can be uniquely written as a linear combination of these

two distinguished vectors, which we now describe. If v⃗ is completely horizontal or vertical, v⃗ is

just a (could be positive or negative) scaling of i⃗ or j⃗, and so that case is simple. Otherwise, v⃗

is the hypotenuse of a right triangle, with base b and height h, and so v⃗ = ϵ1b⃗i + ϵ2h⃗j, where

ϵ1, ϵ2 ∈ {−1, 1} depends on the direction v⃗ is facing. We call {⃗i, j⃗} the standard basis for vectors

in the plane.

Fixing the vectors i⃗ and j⃗ into a specific position in the plane with their tails together forms a

coordinate system. The origin is where these tails are, and represents the zero vector 0⃗. We get axes

with tick marks as usual, representing integer multiples of i⃗ and j⃗. Any vector v⃗ = ϵ1b⃗i + ϵ2h⃗j =

x⃗i + yj⃗ (x, y ∈ R) is then represented by the point where its head is (ϵ1b, ϵ2h) = (x, y). The

four quadrants are determined by the signs of ϵ1 and ϵ2 (the positive quadrant, or quadrant I being
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where both are positive, for example). Note that there were many choices in how we came up with

this standard, or Cartesian, coordinate system, given by a unit of measurement and a location for 0⃗.

Other choices would have given a different coordinate system. Furthermore, we could have started

with any two vectors not facing the same or opposite directions, which would have resulted in a

coordinate system with a parallelogram-shaped grid system instead of the usual squares.

Now that we have our standard coordinate system, we call the set of vectors in the plane rep-

resented in these coordinates R2 = {

x
y

 | x, y ∈ R}. Here we use the matrix

x
y

 to distinguish

the vector v⃗ = x⃗i + yj⃗ from the point where its head lies (x, y), to remind us that the geometric

object has magnitude and direction, and that these vectors lie in a real vector space (and so can be

added together or multiplied by scalars in R). In this coordinate system, i⃗ is represented by the

matrix e⃗1 =

1
0

 and j⃗ is represented by the matrix e⃗2 =

0
1

. With respect to the coordinate

system which we have fixed, we can also represent our operations in coordinates, and see thatx1
y1

 +

x2
y2

 =

x1 + x2

y1 + y2

 and c

x
y

 =

cx
cy

. Hence, these operations on matrices are not ar-

bitrarily chosen when learning about vectors in linear algebra - they represent the coordinate-free

operations of vector addition and scalar multiplication of vectors in a particular coordinate system.

Just like vectors themselves, linear transformations can be represented in coordinates as matri-

ces as well. Consider first 90◦ counter-clockwise rotation L = R90◦ of vectors in the plane (which

does not require coordinates to define). Since any v⃗ = x⃗i+ yj⃗ and R90◦ is a linear transformation,

R90◦(v⃗) = xR90◦ (⃗i) + yR90◦ (⃗j), so to understand what R90◦ does to vectors in general, it suffices

to understand how R90◦ transforms the standard basis vectors i⃗ and j⃗. In coordinates, R90◦ sends

e⃗1 =

1
0

 to e⃗2 =

0
1

. On the other hand R90◦ sends e⃗2 =

0
1

 to −e⃗1 =

−1

0

. Hence, since

R90◦(v⃗) = xR90◦ (⃗i) + yR90◦ (⃗j), R90◦ sends in coordinates

x
y

 to x

0
1

 + y

−1

0

 =

−y
x

.
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Thus in coordinates, R90◦ is represented by the matrix

0 −1

1 0

 (the images of i⃗ and j⃗ in coordi-

nates as columns), and this motivates the matrix-vector multiplication

0 −1

1 0


x
y

 =

−y
x

.

In general for a linear transformation L such that in coordinates L(e⃗1) =

a
c

 and L(e⃗2) =

b
d

, the matrix representing L is

a b

c d

 and if v⃗ = x⃗i+ yj⃗, L(v⃗) = xL(e⃗1)+ yL(e⃗2) is given in

coordinates by the matrix-vector multiplication

a b

c d


x
y

 =

ax+ by

cx+ dy

.

Using the operations in coordinates as motivation, the example of vectors in the plane and

their linear transformations generalizes beyond visualization to the vector space (over the field F )

F n = {



x1

x2
...

xn


| each xi ∈ F}, which has coordinate-wise addition and scalar multiplication as

before. Again, we have a standard basis {e⃗1, e⃗2, . . . , e⃗n}, where e⃗1 =



1

0

0

...

0


, e⃗2 =



0

1

0

...

0


, . . . , and

e⃗n =



0

0

...

0

1


. Hence, any vector v⃗ in F n can be uniquely written as v⃗ = x1e⃗1 + x2e⃗2 + · · · + xne⃗n

In particular, any linear transformation L : F n → Fm can be represented by a m × n matrix,
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whose n columns are given by L(e⃗1), L(e⃗2), . . . , L(e⃗n), each L(e⃗i) expressed as a column matrix

with respect to the standard basis for Fm. In this way, L(v⃗) can be computed in coordinates as a

matrix-vector product.

In fact, the set of all linear transformations L : V → W itself forms a vector space! We denote

by this space L(V,W ), with addition and scalar multiplication of linear transformations defined

point-wise: (L1 + L2)(v⃗) = L1(v⃗) + L2(v⃗), and (cL)(v⃗) = cL(v⃗) (both of which can be verified

to satisfy the properties of linear transformations). For V = F n and W = Fm, with respect to

the standard bases the linear transformations in L(F n, Fm) are in a one-to-one correspondence

with the set of m × n matrices representing the transformations, denoted by Mm×n(F ). Hence,

we can see that the matrices representing the addition of transformations is the component-wise

addition of the corresponding matrices, as taught in linear algebra! Similarly, the matrix repre-

senting a scalar multiplied by a transformation is just multiplying that scalar to every entry of the

matrix representing that transformation. Thus, the set of matrices Mm×n(F ) is also a vector space,

isomorphic to L(F n, Fm).

As we have seen, the usual formulas for matrix algebra are not arbitrary, but represent the

operations of linear transformations. But what about the somewhat unusual definition of matrix

multiplication? As it turns out, the product of two matrices represents the composition of the corre-

sponding linear transformations, which one can check is also a linear transformation. Specifically,

if L1 : F n → Fm and L2 : Fm → F p are linear transformations represented by the matrices A1

(size m × n) and A2 (size p ×m), respectively, then the matrix A2A1 (size p × n) represents the

composition of the linear transformations L2 ◦ L1 : F
n → F p.

In the case that two linear transformations are represented by square matrices, i.e. L1, L2 :

F n → F n, their compositions L1 ◦ L2 and L2 ◦ L1 always well-defined. Hence, L(F n, F n) has

composition as a natural multiplication operation. Furthermore, there is a multiplicative identity,

the identity map, which in the standard basis is represented by the identity matrix, so L(F n, F n)

has the structure of a non-commutative, associative F -algebra with identity. Finally, if a linear

transformation L : F n → F n is an isomorphism (which is certainly not always the case), then there
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exists an inverse linear transformation L−1 : F n → F n, whose corresponding matrix is called the

inverse of the matrix representing L (they multiply both ways to give the identity matrix). Focusing

on invertible linear transformations only, since the composition of invertible linear transformations

is an invertible linear transformation, we thus obtain a group, which when represented by matrices

is called the general linear group, and denoted by GL(n, F )

Central to our discussion of vectors and linear transformations (as well as their operations) in

coordinates was the standard basis {e⃗1, e⃗2, . . . , e⃗n} in F n. As it turns out, every vector space V

has a basis (in fact many bases), which (if the vector space is finite-dimensional), allows one to do

linear algebra in coordinates:

Definition 1.6.3. Let V be a vector space over a field F . A subset of vectors S ⊆ V is linearly

dependent if there exists a linear relation among them, i.e. there exist a1, . . . , ak ∈ F (not all 0)

and v1, . . . , vk ∈ V such that a1v1 + · · · + akvk = 0. A subset S ⊆ V is linearly independent

if it is not linearly independent, i.e. if a1v1 + · · · + akvk = 0 =⇒ a1 = a2 = · · · = ak = 0

for all v1, . . . , vk ∈ S. A subset S ⊆ V spans V if for all v ∈ V , there exist c1, . . . , ck ∈ F

and v1, . . . , vk ∈ V such that v = c1v1 + · · · + ckvk. A subset S ⊆ V is a basis for V if it is

linearly independent and spans V . If S = {v1, . . . , vn} ⊆ V is a finite basis, then we say that V is

finite-dimensional, and in particular that V has dimension n (the size of the basis). We say that

V is infinite-dimensional if no finite basis for V exists.

One can show that the dimension of a finite-dimensional vector space is well-defined, or in

other words that if V has dimension n, every basis of V has cardinality n. In fact, if V is a vector

space over a field F of dimension n, then V ∼= F n. In this sense, choosing a basis for a finite-

dimensional vector space is the same thing as choosing a coordinate system, resulting in all vectors,

linear transformations, and their operations being able to be represented by matrices like F n.

Linear independence of n vectors in F n (and hence whether the vectors form a basis or not)

can be established by the determinant.

Definition 1.6.4. A k-multilinear map from a product of vector spaces V1, . . . , Vk to a vector

space W is a function L : V1 × · · · × Vk → W that is linear in each component separately. In
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other words, fixing elements v2 ∈ V2, . . . , vk ∈ Vk, the map L1 : V1 → W given by L1(v) =

L(v, v2, . . . , vn) is a linear transformation (and the same is true for the other coordinates). A k-

multilinear map L : V k → W from the product of a vector space V with itself k times, denoted

V k, to a vector space W is said to be alternating if for any permutation σ ∈ Sk, L(v1, . . . , vn) =

Sign(σ)L(vσ(1), . . . , vσ(k)). The determinant is the unique alternating n-multilinear map det :

(F n)n → F that takes the standard basis for F n (in the usual ordering) to 1.

In coordinates, (F n)n is the same thing as n column vectors put side to side into an n×nmatrix,

and so in coordinates we can consider the determinant of a matrix A = (aij) to be det(A) =∑
σ∈Sn

Sign(σ)
∏n

i=1 aiσ(i). While this formula quickly becomes unwieldy for large n, and so

there are many other algorithms for computing the determinant of a matrix, this formulation of the

determinant reveals that it is a polynomial in the entries of A. Furthermore, a matrix is invertible

if and only if its determinant is non-zero. The determinant is additionally a group homomorphism

GL(n, F ) → F ∗, since for any two matrices A and B, det(AB) = det(A) det(B), so if both

det(A), det(B) ̸= 0, det(AB) ̸= 0.

Geometrically over R, the determinant of two vectors in the plane (together, a 2× 2 matrix), is

the signed (dependent on orientation) area of the parallelogram that the vectors form. Hence, the

determinant being 0 corresponds to the area being 0, which only can occur when the vectors are

scalar multiples of one another, or in other words they are linearly dependent. In 3-dimensions,

the determinant of three vectors is the signed volume of the parallelepiped that they form. Again,

if all three vectors are scalar multiples of one another (together they only span a 1-dimensional

subspace), then again the determinant is 0 showing linear dependence, but this also occurs for

example if the third vector lies in the plane spanned by the first two vectors (together they only

span a 2-dimensional subspace), since volume is a 3-dimensional concept and so the volume of a

parallelogram is still considered to be 0 (even though it may have finite area). This generalizes to

determinants being hypervolumes of generalized parallelepipeds in Rn, and is the motivation for

the formula for determinants over any field.

While we do not focus on infinite-dimensional vector spaces, there are many important such
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Figure 1.9: The Determinant in R3 is the Volume of a Parallelepiped

spaces. For example, if we ignore polynomial multiplication and instead only allow multiplication

by elements of F , the abelian group F [x] is a vector space with basis {1, x, x2, . . .}. If we consider

all three operations at the same time, F [x] is called an F -algebra. Additionally, the sets C0(R) =

{f : R → R | f is continuous} and C1(R) = {f : R → R | f is continuously differentiable} are

essential real infinite-dimensional vector spaces (operations defined point-wise) in analysis. With

this terminology, the derivative d
dx

: C1(R) → C0(R) and definite integral
∫ b
a
: C0(R) → R are

familiar examples of linear transformations from calculus, which cannot be represented as matrices

due to infinite-dimensionality.

As with groups, rings, and fields, we again have the notion of a sub-vector space of a vector

space V , called a subspace of V , which is a subset U ⊆ V that is itself a vector space (under the

restricted operations from V ). Note that {0} and V are always subspaces of V . If V has dimension

n, then any subspace has dimension less than or equal to n (with equality only achieved for the

subspace V of itself). For example, in R3, the origin is the trivial subspace, the 1-dimensional

subspaces are lines through the origin (each an isomorphic copy of R), and the 2-dimensional sub-

spaces are planes through the origin (each an isomorphic copy of R2), and the only 3-dimensional

subspace is R3 itself. We will often refer to a k-dimensional subspace of a vector space V a

k-plane.

Let V be a vector space over F , and let W1,W2 ⊆ V be subspaces. Then, some important

subspaces we can obtain are W1∩W2 ⊆ V and W1+W2 = {w1+w2 | w1 ∈ W1, w2 ∈ W2} ⊆ V .
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IfW1∩W2 = {⃗0}, we further writeW1

⊕
W2 forW1+W2 , and call this the (internal) direct sum

of W1 and W2. Note that W1 ∪W2 ⊆ V is not a subspace. Now, if we have a linear transformation

L : V → W , we also get important subspaces N(L) = {v ∈ V | L(v) = 0⃗} ⊆ V , called the

null space or kernel of L, and R(L) = L(V ) ⊆ W is the image of L (also called the range of L

in elementary linear algebra courses). The dimensions dim(R(L)) and dim(N(L)) are called the

rank and nullity of L, respectively, and these terms are also applied to any matrix representing L

in coordinates.

In addition to subspaces, we have quotients of vector spaces by subspaces, which is very sim-

ilar to the quotients of rings by ideals we considered earlier. Using these quotients, we get the

Isomorphism Theorems. Often one encounters such theorems for the first time in the context of

groups or rings, but for vector spaces, by taking dimensions we recover some important facts about

the dimensions of certain subspaces.

Definition 1.6.5. Let V be a vector space over a field F , and let M ⊆ V be a subspace. We define

an equivalence relation ∼ on V by v1 ∼ v2 if v1 − v2 ∈M , and denote by v +M the equivalence

class of v ∈ V . The quotient space V/M is the set of equivalence classes {v+M | v ∈ V }, which

is a vector space over F , equipped with operations (v1 +M) + (v2 +M) = (v1 + v2) +M and

c(v+M) = (cv)+M for all v, v1, v2 ∈ V and c ∈ F . In this quotient vector space, the zero vector

is 0⃗ +M , and the additive inverse of v+M is (−v)+M . If V and M are finite-dimensional, then

the dimension dim(V/M) = dim(V )− dim(M).

One way to visualize a quotient space V/M is as the set of translates of the subspace M . For

example, if M is a 1-dimensional subspace of R2 (so a line through the origin), the elements of

V/M can be visualized as all of the lines in R2 parallel to M . Adding two lines together amounts

to adding any vectors from each of the lines together, with the resulting vector lying on the line

that we call the sum of the two lines. The same logic applies to scalar multiplication. For this

example, dim(V/M) = dim(R2)−dim(M) = 2− 1 = 1, so again we can think of the quotient as

isomorphic to a line in R2 itself. One can find such an isomorphism by choosing any 1-dimensional

subspace W of R2 that is not M (line through the origin that isn’t M ), and identifying every line
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Figure 1.10: Visualizing a Quotient Space V/M in R2

in V/M with its point of intersection with W . This idea is deep, because what we are saying is

that we have a geometric object with structure (a vector space), and partitioning that object into

sub-geometric objects of interest (lines) yields together another geometric object with the same

structure (the quotient space). This is the beginnings of what are called parameter spaces, or

moduli spaces, with W being the parameter space in our example. We will see other essential

moduli spaces throughout this dissertation, such as projective spaces, Grassmannians, and flag

manifolds.

Theorem 1.6.6. (The First Isomorphism Theorem and the Rank-Nullity Theorem) Let L : V → W

be a linear transformation of vector spaces over a field F . Then, V/N(L) ∼= R(L). Furthermore,

dim(V ) = dim(N(L)) + dim(R(L))

Proof. Define L̃ : V/N(L) → R(L) by L̃(v + N(L)) = L(v). One can show that this is a

well-defined bijective linear transformation, giving the desired isomorphism. The last result fol-

lows from dim(V/N(L)) = dim(V )− dim(N(L)), and that vector space isomorphisms preserve

dimension.

One important consequence of Theorem 1.6.6 occurs when solving a differential equation (or

system of equations) D(f) = g, D being the linear differential operator, and f and g being

functions (or vectors of functions). One can first solve the corresponding homogeneous differ-

ential equation D(f) = 0⃗, which is by definition finding the null space N(D). Then, since
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V/N(D) ∼= R(D), as long as g ∈ R(D), a general solution is of the form h + N(D), where

h is a particular solution, but any h̃ with h̃− h ∈ N(D) will do.

Theorem 1.6.7. (The Second Isomorphism Theorem and Intersections of Subspaces) LetW1,W2 ⊆

V be subspaces of a vector space V over a field F . Then, viewing W2 = {⃗0 + w2 | w2 ∈ W2} ⊆

W1 + W2, we have (W1 + W2)/W2
∼= W1/(W1 ∩ W2) As a special case, dim(W1

⊕
W2) =

dim(W1) + dim(W2). Furthermore, dim(W1 +W2) = dim(W1) + dim(W2) − dim(W1 ∩W2).

In particular, dim(W1 ∩W2) ≥ dim(W1) + dim(W2)− dim(V ).

Proof. DefineL : W1+W2 → W1/(W1∩W2) byL(w1+w2) = w1+(W1∩W2). One can show that

this is a surjective linear transformation (in particular R(L) = W1/(W1 ∩W2)), and that the null

space N(L) = W2, so by the first isomorphism theorem, (W1 +W2)/W2
∼= W1/(W1 ∩W2). The

other results involving dimension come from dim((W1 +W2)/W2) = dim(W1/(W1 ∩W2)) =⇒

dim(W1 +W2) − dim(W2) = dim(W1) − dim(W1 ∩W2), and rearranging. The last statement

uses dim(W1 +W2) ≤ dim(V ), so dim(W1 ∩W2) = dim(W1) + dim(W2)− dim(W1 +W2) ≥

dim(W1) + dim(W2)− dim(V ).

Recall that a linear system might not have solutions due to the corresponding linear spaces

not intersecting (like parallel lines in the plane). One can guarantee non-trivial intersections of

subspaces by making sure that the intersection subspace has dimension greater than 0. For example

(and an example that is crucial at the beginning of the next section), consider two planes H1 and

H2 through the origin in C3 (2-dimensional subspaces of C3). These planes must intersect non-

trivially, since by our theorem, dim(H1∩H2) ≥ dim(H1)+dim(H2)−dim(V ) = 2+2−3 = 1 > 0.

Now, we connect abstract vector spaces to our discussion of field extensions and Galois groups

from the previous section. Since every field is a 1-dimensional vector space over itself (F n with

n = 1), every field can be viewed as a subspace of its field extensions K/F , where K is viewed

as a vector space over F (since one just restricts which scalars are permitted for scalar multi-

plication). For example, the field extension C/R allows us to view C as a 2-dimensional real

vector space, and in fact our definition C = R(i) = {a + bi | a, b ∈ R} describes C in this way
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with {1, i} as the real basis. Similarly from earlier examples, Q(ω) has {1, ω} and Q( 3
√
2, ω) has

{1, ω, w2, 3
√
2, ω 3

√
2, ω2 3

√
2} as bases over Q. Note that the dimensions of these fields over Q are

equal to the orders of their Galois groups Z/2Z and S3, respectively. This is not a coincidence!

Definition 1.6.8. Let K/F be a field extension. The degree of the extension is the dimension of the

vector space K over F , and is denoted [K : F ]. If [K : F ] <∞, we say that K/F is a finite field

extension. Note that [K : F ] = 1 if and only if K = F , so if [K : F ] > 1 is finite, we say K/F is

a proper finite extension. If E is an intermediate field of K/F , then [K : F ] = [K : E][E : F ].

Proposition 1.6.9. Finite field extensions K/F are always algebraic

Proof. Let α ∈ K, and consider the set S = {1, α, α2, . . . , αn}, where [K : F ] = n < ∞ (by

assumption since a finite extension). Since S ⊆ K has n + 1 elements, it must be a linearly

dependent set, so there exist c0, . . . , cn ∈ F (not all 0) such that cnαn+ · · ·+ c1α+ c0 = 0. Hence,

α ∈ K is a root of the polynomial cnxn + · · · + c1x + c0 ∈ F [x], so α is algebraic over F . Since

α ∈ K, was arbitrary, K/F is an algebraic extension.

For a field extension, Aut(K/F ) = {field isomorphisms φ : K → K | φ(x) = x for all x ∈

F} always makes sense (and is called the automorphism group of K/F ), regardless of whether

the extension is Galois or not. However, one of the many reasons that this group contains in-

formation about the intermediate fields of K/F (the Fundamental Theorem of Galois Theory) is

because [K : F ] = |Aut(K/F )| if and only if K/F is a Galois extension. In fact, we could have

defined Galois extensions equivalently this way. Additionally we have a relation between degrees

of sub-extensions and orders of subgroups as well, consistent with the inclusion-reversing prop-

erty. Specifically, in the statement of the Fundamental Theorem of Galois Theory, we can now

add that if K/F is a Galois extension, and if H ⊆ G is a subgroup, then |H| = [K : KH ] and

|Gal(K/F )|
|H| = [KH : F ]. We can now use the theorem to prove that C is an algebraically closed field.

Here we also need a few basic facts from analysis, since the construction of C is as an algebraic

extension of R, which was not a purely algebraic extension of Q.
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Theorem 1.6.10. (The Fundamental Theorem of Algebra) The set C of complex numbers is an

algebraically closed field (meaning C = C).

Proof. It suffices to show that C has no proper finite field extension, since if there were any proper

algebraic extension L/C, choosing any α ∈ L, α is algebraic so C(α)/C would be a finite ex-

tension (with degree the degree of the minimal polynomial of α). Hence, assume K/C is a finite

extension (we show [K : C] = 1, so K = C. Since the normal closure of K over R still has a

finite degree over C (or R), we may further assume without loss of generality that K/R is normal

(and so a Galois extension, since extensions over characteristic 0 fields are always separable).

Let G = Gal(K/R). Since K ⊆ C ⊆ R, |G| = [K : R] = [K : C][C : R] = 2[K : C]. By

the First Sylow Theorem, G has a Sylow 2-subgroup H (a maximal subgroup with order a power

of 2), and so |G|
|H| is odd. By the Fundamental Theorem of Galois Theory, there is an intermediate

field E of K/R such that Gal(K/E) = H . As [E : R] = |G|
|H| is odd, and by the Intermediate Value

Theorem every odd degree polynomial has at least one real root (so is not irreducible unless degree

1), it must be thatE = R ([E : R] = 1). Thus, [K : R] and [K : C] must be powers of 2. By way of

contradiction, assume [K : C] > 1. Then, G is a 2-group and so must contain a subgroup H ′ such

that |G|
|H′| = 2, giving by the Fundamental Theorem of Galois Theory an intermediate field E ′ of

K/C with [E ′ : C] = 2, which is a contradiction since every element z ∈ C has a complex square

root
√
z ∈ C (so quadratics are all reducible by the quadratic formula). Therefore, it must be that

[K : C] = 1, so K = C, and C has no proper finite extensions (hence no algebraic extensions by

our above discussion), so C is algebraically closed.

1.7 Projective Space and Polynomial Equations

Returning to our discussion of “expanding our world" to solve increasingly difficult equations,

recall that the axioms of a vector space allow one to fully solve systems of linear equations under

a very strong condition - the solutions have to exist! Geometrically, over R, even a 2 × 2 system

might have no solution, corresponding to parallel lines that do not intersect. The existence of

parallel lines (the “parallel postulate") is one of the five (and the most controversial) axiom of
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Euclidean geometry in the plane, as presented in Euclid’s The Elements. However, experience tells

us that we do not live in a flat plane, but on the surface of an approximate sphere that has curvature

(sorry Flat Earthers!). Hence, seemingly parallel lines (look closely at the border of Canadian

prairie provinces) might begin to converge, and the shortest distance between two locations might

not be the “straight line" between them (hence why pilots use great circle routes to optimize travel

times). The theme here is that while the ground beneath us might look like a plane, if we zoom

out and have a higher perspective, we notice that reality involves more complicated and interesting

geometry. This is the central notion of a manifold - a geometric object which locally looks like

Euclidean space Rn, but which likely has more interesting geometry globally. We first introduce

another example of a manifold, the projective plane, where parallel lines intersect (different than

the spherical geometry informally described above), and then describe manifolds and projective

space in general.

Consider the system of equations corresponding to the parallel lines y = x− 1 and y = x+ 1

in C2 (note that we work over the algebraically closed field C, but our pictures are all over R):


x− y − 1 = 0

x− y + 1 = 0

(1.4)

−2 −1 0 1 2

−2

0

2

x

y

y = x− 1
y = x+ 1

But what if these weren’t *actually* lines? What if in our limited perspective, we don’t see the

whole picture, but only a projection of a larger reality? This is the fundamental idea of projective

43



Figure 1.11: Example of Perspective Art

geometry, inspired by perspective art, where lines appear to intersect at a “line at infinity", visually

seen as a horizon.

To make this precise, consider that the lines x − y − 1 = 0 and x − y + 1 = 0 in the plane

C2 are actually the projections of the planes x− y − z = 0 and x− y + z = 0, respectively, onto

the z = 1 plane in space C3. Note that these planes pass through the origin (i.e. are 2-dimensional

subspaces of C3), and so their intersection must be a subspace of dimension 1 - the line through

the origin in C3 given implicitly by the two equations z = 0, x− y = 0 (see Figure 1.10). This line

does not intersect the plane we originally viewed the two lines as being parallel in, and so while

the planes do intersect, the projection that we started with “missed" the intersection. However, if

we take another projection, say to the y = 1 plane in C3, the equation of our planes become the

lines z = x − 1 and z = −x + 1, which intersect at the point (1, 1, 0) ∈ C3. In other words, we

can interpret this as having looked at the seemingly parallel lines from the wrong perspective, but

in changing our view we see where they in fact meet. The “world" where such solutions to 2 × 2

linear systems always exist is called the (complex) projective plane P2.

Definition 1.7.1. The complex projective plane P2 = {lines through the origin in C3}. In other
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Figure 1.12: Parallel lines are actually a projection of intersecting planes

words, P2 is the set of 1-dimensional linear subspaces of C3.

Hence, points in P2 are what we traditionally view as lines through the origin in C3, and so

lines in P2 are what we traditionally view as planes through the origin (lines of lines) in C3. As a

result, any two distinct lines in P2 (planes through the origin in C3) intersect in a point in P2 (line

through the origin in C3), so 2× 2 linear systems always have solutions in P2!

So far we’ve discussed P2 without coordinates, but for any point in P2, we can choose a basis

for the corresponding line through the origin in C3, giving a representative for that point. Since

1-dimensional, any other choice of basis element (representative for the point) for the line will only

differ by a non-zero scalar multiple. Hence, we obtain an equivalent definition of P2 as a set of

equivalence classes of non-zero vectors in C3: P2 = (C3 \ {⃗0})/ ∼, where


X

Y

Z

 ∼ λ


X

Y

Z

 for

all λ ∈ C \ {0}. In other words, we represent the elements of P2 by vectors in C3, understanding

that the point in P2 is really the span of the vector representing it, and we call such a representation

homogeneous coordinates for that point.
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Whenever one is working with equivalence classes, it is often helpful to have certain repre-

sentatives of the equivalence class that are easier to work with, and these are often called “normal

forms" or “canonical forms". The rational numbers Q are such a set of equivalence classes, since

while 3
7

and 18
42

are the same number (have the same equivalence class), the reduced fraction 3
7

(the

normal form for the class) is often preferred. However, it is beneficial to not always have to work

with normal forms, since 18
42

would be a better representation to use when computing 3
7
+ 1

42
, for

example.

Similar to working with other sets of equivalence classes, such as the rational numbers, for the

projective plane we have choices of local coordinates for points that are often preferable over

homogeneous coordinates to work with. For a point


X

Y

Z

 ∈ P2, we know that at least one

of X, Y, Z ∈ C are non-zero (since otherwise you have the 0-vector, which does not span a 1-

dimensional subspace). Hence, if Z ̸= 0, one can obtain another representative (different choice

of basis for the line) by multiplying by λ = 1
Z

to obtain local coordinates


x

y

1

, where x = X
Z

and y = Y
Z

. The set of such points is called the affine chart A2
Z = {


X

Y

Z

 ∈ P2 | Z ̸= 0}, and

is the set of lines in C3 not contained in the xy-plane. Such lines must intersect the plane z = 1

in C3 and they can be identified with this point of intersection (x, y, 1). In other words, we want

to say that A2
Z is isomorphic (and we will soon make this precise) to C2. Similarly, we get affine

charts A2
X (points where X ̸= 0) and A2

Y (points where Y ̸= 0), both isomorphic to C2, and

P2 = A2
X ∪ A2

Y ∪ A2
Z (with great overlap between these charts). In our motivating example, the

parallel lines we considered were in A2
Z ⊆ P2, but their intersection, while in P2, was not in the

46



affine chart A2
Z . Instead, the intersection was the point


1

1

0

 ∈ P2 (notice Z = 0), which does

belong to the other affine charts A2
X and A2

Y in P2. The affine charts endow P2 with the structure of

a manifold, which is a special type of topological space. We define both now, and use the notation

P(X) for the power set of a set X (the set of all subsets of X).

Definition 1.7.2. A topological space is a set X , equipped with a collection of subsets τ ⊆ P(X)

satisfying:

1. ∅, X ∈ τ

2. τ is closed under finite intersections: If U1, . . . , Un ∈ τ , then U1 ∩ · · · ∩ Un ∈ τ

3. τ is closed under arbitrary unions: If Λ is an arbitrary index set, and {Uλ | λ ∈ Λ} ⊆ τ ,

then
⋃
λ∈Λ Uλ ∈ τ

We call τ a topology on X , and sometimes write (X, τ) to indicate that X is endowed with the

specific topological structure given by τ . Elements of τ are called the open sets in X , and the

complements of elements of τ are called the closed sets in X (both with respect to τ ). Note that

∅c = X and vice-versa, so sets like these that are open and closed are referred to as clopen.

A standard example of a topological space is R with the Euclidean topology: open sets are

unions of open intervals (c − r, c + r) (where c ∈ R and r ∈ R>0). This example generalizes to

Rn, Cn or any metric space (X, d) where the open sets are unions of open balls Br(x) = {p ∈ X |

d(x, p) < r} (where r ∈ R>0 and x ∈ X). Since any open set is defined to be a union of these open

balls, and for any point in the intersection of two open balls, there is a third open ball containing

that point and contained in the other two, we say that they form a basis for the the topology and

are called basic open sets. Note that this definition is different than a basis for a vector space, but

this should always be clear from context.

Like the algebraic structures we’ve introduced so far, we also are interested in the functions

between topological spaces that preserve the structure. In topology, these are continuous functions.
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Definition 1.7.3. Let (X1, τ1) and (X2, τ2) be topological spaces. A continuous map is a function

f : X1 → X2 such that for every open set U ∈ τ2 in X2, its preimage f−1(U) ∈ τ1 is open in

X1. Similarly, we say f is continuous at a point c ∈ X1 if for every open set U ∈ τ2 containing

f(c), there exists an open set V ∈ τ1 containing c such that f−1(U) ⊆ V . The statement that f is

continuous is equivalent to being continuous at every point c ∈ X1. If the topologies have bases

B1 and B2, respectively, continuity can be established just by considering the basic open sets. A

bijective continuous map f : X1 → X2, whose inverse f−1 : X2 → X1 is also continuous, is

called a homeomorphism, in which case we say that the topological spaces (X1, τ1) and (X2, τ2)

are homeomorphic.

Considering functions f : R → R and basic open sets (in this case, intervals), the statement

f−1((c − δ, c + δ)) ⊆ (f(c) − ϵ, f(c) + ϵ) is equivalent to the usual definition from calculus: f

is continuous at c ∈ R if for all ϵ > 0, there exists δ > 0 such that whenever x ∈ R satisfies

0 ≤ |x− c| < δ, |f(x)− f(c)| < ϵ.

Note that topological spaces were defined in terms of open sets, but equivalently they could

have been defined in terms of closed sets via De Morgan’s laws: (
⋃
λ∈Λ Uλ)

c =
⋂
λ∈Λ U

c
λ and

(
⋂
λ∈Λ Uλ)

c =
⋃
λ∈Λ U

c
λ. In other words, a topological space could also have been defined as a set

X with a collection of closed sets containing ∅ and X , that is closed under finite unions and ar-

bitrary intersections. Furthermore, a continuous map between topological spaces can equivalently

be defined as a function where the preimages of closed sets are closed.

The topology on P2, called the Zariski topology, is best defined in terms of closed sets,

which are defined to be intersections of projective plane curves. A projective plane curve is

the zero set to a homogeneous (every term has the same total degree d) three-variable polynomial

F (X, Y, Z) = 0, which F : P2 → C is not well-defined (since by homogeneity F (λX, λY, λZ) =

λdF (X, Y, Z) ̸= F (X, Y, Z) for all λ ∈ C \ {0}), but its zero set V (F ) = {


X

Y

Z

 ∈ P2 |

F (X, Y, Z) = 0} is well defined (since multiplication by λd doesn’t change the solution set).
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Hence, a basis for the open sets of the Zariski topology on P2 are {DF | F (X, Y, Z) is homogeneous},

where DF = V (F )c = {


X

Y

Z

 ∈ P2 | F (X, Y, Z) ̸= 0}. One can see that the three affine charts

are special cases of such basic open sets: A2
X = DX , A2

Y = DY , and A2
Z = DZ .

Beyond that of a topological space, the affine charts make P2 into a manifold, which will be

crucial for our future discussion.

Definition 1.7.4. Let X be a topological space, and fix n ∈ N>0. A local coordinate chart on X

is a homeomorphism φ : U → V , where U ⊆ X and V ⊆ Rn are each open in their respective

topologies. In other words, φ−1 gives a parametrization of U by the open subset V ⊆ Rn. Two

local coordinate charts φ : Uα → Vα and φβ : Uβ → Vβ are compatible if the map φα ◦ φ−1
β :

φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is a homeomorphism. An atlas on X is an open covering X =⋃
λ∈Λ Uλ by mutually compatible local coordinate chartsUλ ⊆ X . There is an equivalence relation

on the set of atlases on a topological space X , where two such atlases are considered equivalent

if their union is an atlas as well (so the local coordinate charts in each are compatible with one

another). A n-dimensional topological manifold is a topological space X , equipped with an

equivalence class of atlases.

One can obtain different types of manifolds by changing the compatibility condition in the

definition above, leaving everything else the same. For example, if each φα◦φ−1
β is further required

to be a diffeomorphism (it and its inverse are smooth, meaning derivatives of all orders exist), we

say the topological manifold X is an n-dimensional smooth manifold. If one considers local

coordinate charts where V ⊆ C⋉ (topologically, homeomorphic to R2n), and if each φα ◦ φ−1
β is

further required to be a bi-holomorphism (it and its inverse are holomorphic, meaning complex

analytic), we say the topological manifold X is an n-dimensional complex manifold (and would

also be a 2n-dimensional smooth manifold).

For the projective plane P2, {φX : A2
X → C2, φY : A2

Y → C2, φZ : A2
Z → C2} is an atlas

making P2 into a 4-dimensional topological and smooth manifold, and a 2-dimensional complex
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Figure 1.13: Compatible charts on a manifold M

manifold, where for example φX(


X

Y

Z

) =
 Y
X

Z
X

, φ−1
Y (

x
z

) =

x

1

z

, and so φX ◦ φ−1
Y (

x
z

) =
 1
x

z
x

 (the other charts and compositions are similar). Note that φX ◦ φ−1
Y is a rational function

(quotients of polynomials) defined everywhere on the overlap, and so is a diffeomorphism and

bi-holomorphism. We already demonstrated the usefulness of moving from coordinate chart to

coordinate chart, allowing for solutions to 2×2 systems of linear equations when there are parallel

lines. We now move to more general systems of linear, and in fact polynomial equations - which

solutions are best found in what is called projective space. We will also describe how the projective

plane contains all solutions to intersections of projective plane curves (a 2× 2 polynomial system

in 3 variables). First, we make the notion of multivariable polynomials precise.

Definition 1.7.5. A monomial in the n variables x1, . . . , xn is xa11 · · ·xann , where a1, . . . , an ∈

N. Note that the set of monomials in n variables is in one-to-one correspondence with Nn, with

α = (a1, . . . , an) being the multi-degree of the monomial, and often write xα as a shorthand

for the monomial. We say that the monomial has total degree |α| = a1 + · · · + an. A n variable
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polynomial over a field F is a finite linear combination of monomials f =
∑

α∈I cαx
α, where I is a

finite index set and each cα ∈ F . We denote by F [x1, . . . , xn] the set of all n variable polynomials

over F , which is by construction the infinite-dimensional vector space over F with basis {xα |

α ∈ Nn}. However, it has more structure as an F -algebra, and we often call F [x1, . . . , xn] a

polynomial ring since polynomials can be multiplied by linearly extending the multiplication on

monomials xαxβ = xα+β , where the addition in Nn is done coordinate-wise. If S ⊆ F [x1, . . . , xn]

is a set of polynomials, the ideal generated by S is I = (S) = {finite sums
∑

α hαfα | hα ∈

F [x1, . . . , xn], fα ∈ S}.

Definition 1.7.6. Let F be a field. Affine n-space over F is An(F ), which is the set F n, ignoring

the vector space structure, and with a certain topology, called the Zariski topology, which we now

describe. For any subset S ⊆ F [x1, . . . , xn], an affine variety is the solution to the polynomial

system V (S) = {p ∈ An(F ) | f(p) = 0 for all f ∈ S}. One can see that if I = (S) is the

ideal generated by S, then V (S) = V (I), so it suffices to consider systems of ideals of polynomial

equations. It turns out that F [x1, . . . , xn] is a Noetherian ring, meaning that all of its ideals are

finitely generated, so for all ideals I ⊴ F [x1, . . . , xn] there exists finite S ′ = {f1, . . . , fk} such

that V (I) = V (S ′), and so we write V (f1, . . . , fk) for the variety of the polynomial system with k

equations (which solves the entire ideal of equations). A variety generated by a single polynomial

equation V (f) is called a hypersurface, and note that V (f1, . . . , fk) = V (f1) ∩ · · ·V (fk), so

every affine variety is the intersection of finitely many hypersurfaces. The Zariski topology on

An(F ) is given by defining closed sets to be affine varieties, with basic open sets then given to be

complements of hypersurfaces.

Definition 1.7.7. Let F be a field. Projective n-space over F is

Pn(F ) = {the set of 1-dimensional subspaces of F n+1}, equipped with its own Zariski topology.

In homogeneous coordinates, Pn(F ) = (F n+1 \ {⃗0})/ ∼, where two vectors in F n+1 are equiv-

alent if they are non-zero scalar multiples of one another (so they are both bases for the same

1-dimensional subspaces, just as for P2 earlier). A polynomial f ∈ F [x0, . . . , xn] is homoge-

neous of degree d if each of its monomials has the same total degree d. A projective variety is
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V (S) = V (I) = V (f1, . . . , fn) as in the definition of an affine variety, but where all polyno-

mials in S are required to be homogeneous. With hypersurfaces defined just as for affine space

(but with a single homogeneous polynomial equation), the Zariski topology on Pn(F ) is given by

defining closed sets to be projective varieties, with basic open sets then given to be complements

of hypersurfaces.

Definition 1.7.8. For either an affine or projective variety (which for short, we just call a variety)

X = V (I), a subvariety is a variety Y (of the same type) that is a subset Y ⊂ X . An irreducible

variety is a variety such that if X = Y ∪ Z for subvarieties Y, Z ⊆ X , then X = Y or X = Z

(it can’t be written non-trivially as the union of two varieties). A variety that is not irreducible is

called reducible. The dimension of a variety is the maximal length of chains of X0 ⊆ X1 ⊆ · · · ⊆

Xd of non-empty, distinct, and irreducible subvarieties of X . In this case, if a chain of length d is

maximal, we say that X is d-dimensional. If Y ⊆ X , we call dimX(Y ) = dim(X)− dim(Y ) the

codimension of Y in X .

Note that P2 = P2(C), and in general we write Pn for Pn(C). In general, Pn with homogeneous

coordinates x0, . . . , xn is an n-dimensional complex manifold with affine charts An
xi

where the

xi-coordinate is non-zero (and so has a normal form, where there is a 1 in that coordinate after

re-scaling). The local coordinate charts φxi : An
xi
→ Cn are just the extension of those we defined

for P2. Note that these maps still make sense from Pn(F ) to An(F ) for any field F , and that the

transition functions φxi ◦ φ−1
xj

are still given by rational polynomial functions defined everywhere

on the overlap, and so in general we call Pn(F ) an algebraic n-dimensional manifold over F ,

since it is also an n-dimensional projective variety (the two notions of dimension coincide).

If one has more experience with analysis of R, Rn, or general metric spaces, they are familiar

with the idea of compact subsets. In Rn a subset is compact if and only if it is closed (complement

of an open set) and bounded (contained in some Bx(r)), and in metric spaces compact subsets

must be complete and totally bounded. One can see that inherently, compactness is a topological

property, and generalizes to topological spaces in general.

Definition 1.7.9. Let (X, τ) be a topological space. A subset K ⊆ X is compact if for every open
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cover of K (a collection of open subsets {Uλ | λ ∈ Λ} such that K ⊆
⋃
λ∈Λ Uλ), there exists a

finite subcover (a sub-collection {Uλ1 , . . . , Uλn} (each λi ∈ Λ) such that K ⊆
⋃n
i=1 Uλi .

Additionally, connectedness of a space is a property defined in terms of open sets: a topological

space is disconnected if it is the union of two disjoint non-empty open sets, and is connected

otherwise.

Compactness and connectedness are purely topological properties of a space, and so are pre-

served by continuous functions: If f : X1 → X2 is continuous, and K ⊆ X1 is a compact subset,

then f(K) ⊆ X2 is compact as well. If f : X1 → X2 is continuous, and C ⊆ X1 is a connected

subset, then f(C) ⊆ X2 is connected as well. Points are closed in Cn (topologically the same as

R2n), and polynomial functions are continuous, so if f : Cn+1 → C is f(z0, . . . , zn) = z20+· · ·+z2n,

Sn = f−1({1}) ⊆ Cn+1 is a closed subset, called the complex n-sphere. Since it is bounded by

definition, it is a compact subset (note that it is also connected). There is a map Sn → Pn that takes

a vector in Cn+1 to the line it spans. This is surjective and continuous, showing that projective

space is a compact manifold (and connected as well). In fact, projective space Pn can be viewed

as a compactification of any of its affine charts An, this compactification being a key reason why it

has such great intersection theoretic properties.

In addition to being a compact manifold, projective space Pn additionally has the property that

it is paved (or stratified) by affines. We call this the Schubert cell decomposition of Pn, and

such a decomposition holds true for any Pn(F ), and will be central to future discussion. To define

the Schubert decomposition, we must first introduce the notion of complete flags. The inspiration

behind the name flag is a point on a line, contained in a plane in R3: the point on a line is the ball

at the top of a flagpole, and attached to the pole is the flag itself, which is like a plane (see Figure

1.12).

Definition 1.7.10. Let V be an n-dimensional vector space over a field F . Then, a complete flag

in V , denoted F•, is a saturated chain of distinct subspaces of V , one for each dimension from

0 to n: F• is the chain {0} ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn = V , where each Fi ⊆ V is a subspace

with dim(Fi) = i. We denote by Fl(n) the set of all complete flags in V = F n. Similarly,
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Figure 1.14: Cartoon of a Complete Flag

a partial flag in V of shape (a1, . . . , as), also denoted as F•, is a chain of distinct subspaces

{0} ⊆ Fa1 ⊆ Fa2 ⊆ · · · ⊆ Fas = V , where dim(Fai) = ai. We denote by Fl(a1, . . . , as;n) the set

of partial flags in V of shape (a1, . . . , as).

If {e⃗1, . . . , e⃗n} is the standard basis for F n, then one can obtain the identity flag I• by defin-

ing Ii = Span{e⃗1, . . . , e⃗i}. Similarly, one can obtain the opposite flag O• by defining Oi =

Span{e⃗n, e⃗n−1, . . . , e⃗n−i+1}. Once a flag F• in a vector space V is fixed, that flag partitions Pn(F )

into disjoint sets, called Schubert cells, by grouping together the lines in F n+1 that have the same

attitude with respect to the flag, or in other words, lines that intersect the vector spaces Fi in the

same dimensions.

Definition 1.7.11. Let F• be a complete flag in F n+1. For each i = 1, . . . , n, the corresponding

Schubert cell in Pn(F ) is Ω◦
{i}F• = {x ∈ Pn(F ) | x ⊆ Fn+2−i and x ̸⊆ Fn+1−i}, and Ω◦

{n+1}F• =

F1. Again for each i = 2, . . . , n + 1, the corresponding Schubert variety in Pn(F ) is Ω{i}F• =

Ω◦
{i}F• = {x ∈ Pn(F ) | x ⊆ Fn+2−i} (and again Ω{n+1}F• = F1), where the closure is in the

Zariski topology.

To illustrate Schubert cells and Schubert varieties, fix the opposite flag O• in P2. Then, O1 =

Span{e⃗3}, O2 = Span{e⃗3, e⃗2}, and O3 = Span{e⃗3, e⃗2, e⃗1}. In this case, Ω◦
1O• = {


1

∗

∗

}, Ω◦
2O• =
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{


0

1

∗

}, and Ω◦
3O• = {


0

0

1

} (where ∗ here means any complex number). In other words, Ω◦
1O• =

A2
x is the affine chart (what we will refer to as the “big Schubert cell" or “big cell") containing all

lines that intersect the x = 1 plane. This contains all points of P2 except for those representing

lines in the yz-plane (which is O2) in C3. At the same time, Ω◦
2O• represents all lines which are

in the yz-plane (O2), except the z-axis (O1). Then, Ω◦
3O• is the z-axis itself (O1). Note that we

have a disjoint union P2 = Ω◦
1O• ∪ Ω◦

2O• ∪ Ω◦
3O•, with Ω◦

1O• ∼= A2, Ω◦
2O• ∼= A1, and Ω◦

2O• ∼= A0

(a single point), so this is what we mean by P2 being paved by affines. Taking closures, we have

that Ω1O• = {


∗

∗

∗

} ∼= P2, Ω2O• = {


0

∗

∗

} ∼= P1, and Ω3O• = {


0

0

∗

} ∼= P0 (a single point), and

so each Schubert variety is a projective space. One can easily generalize computing the Schubert

decomposition with respect to the opposite flag for any projective space Pn(F ).

Schubert varieties are key for understanding why projective space Pn(F ) is the ideal setting

for solving systems of polynomial equations in F [x0, . . . , xn] (which polynomials we can make

homogeneous like in our motivating example going from lines to planes). This is because Schubert

varieties are normal forms for equivalence classes in an F -algebra called the Chow ring of Pn(F ),

called Schubert classes, which form a finite-dimensional basis for the F -vector space structure

of the ring. Furthermore, the intersections of varieties correspond to multiplication in the ring,

revealing that understanding intersections of Schubert varieties is sufficient for understanding all

the intersection theory in Pn(F ). The rest of this section will be less rigorous as intersection theory

in algebraic geometry is quite technical, but we hope to illustrate the main ideas with examples.

Note below by a free abelian group, we mean the analogue of a vector space over the integers Z.

Though Zn is not a vector space, it does have a standard basis over Z, which is a ring. Such objects

are called free abelian groups, and are an example of a free module (modules over a ring having

the same axioms as a vector space, just with scalars from a ring instead of a field).

55



Figure 1.15: Hyperbola and Two Disjoint Lines Are Rationally Equivalent

Definition 1.7.12. Let F be a field. The set of k-cycles on Pn(F ), denoted by Zk(Pn(F )), is the

free abelian group with basis every codimension k irreducible subvariety of Pn(F ). In other words,

a k-cycle C is a formal linear combination of irreducible subvarieties with integer coefficients:

C = n1Y1 + · · · + nkYk. We informally say that two cycles C1 and C2 are rationally equivalent,

denoted C1 ∼ C2, if one can rationally deform C1 into C2 (meaning there exists a flat family of k-

cycles, rationally parametrized by P1, withC1 andC2 both in the family). To get the idea of rational

equivalence, see Figure 1.13, which shows how a family of hyperbolas can deform rationally onto

two disjoint lines, showing that the hyperbola is rationally equivalent to two disjoint lines. The

k-th Chow group is the set of equivalence classes Ak(Pn(F )) = Zk(Pn)/ ∼. The Chow ring

A(Pn(F )) is the free abelian group graded by codimension A(Pn(F )) =
⊕n

k=0A
k(Pn(F )), so

multiplication takes Ak(Pn(F )) × Al(Pn(F )) → Ak+l(Pn(F )) (and Ak(Pn(F )) is understood to

be {0⃗} for k < 0 or k > n. The multiplication in general is quite technical to describe, but for any

two irreducible subvarieties Y, Z ⊆ X , if the intersection Y ∩ Z is transverse, [Y ][Z] = [Y ∩ Z],

and this is extended linearly over Z.

56



−2 −1 0 1 2
−3

−2

−1

0

1

x

y
y = −x2 + 1

y = 1

−2 −1 0 1 2
1

2

3

4

5

t

y

y = x2 + 1
y = 2

Note a transverse intersection at a point means that there are enough tangent vectors to both

subvarieties to span the entire space (the equations for the tangent space are in direct sum). Looking

at the two graphs pictured above, on the left one has a non-transverse intersection of the line and

the parabola at their unique point of intersection since they share a tangent line, but on the right

for either point of intersection of the line and parabola, there are two distinct tangent lines, so the

intersection is transverse.

The Chow ring can be defined for any smooth projective variety in much the same way, and

by a theorem of Totaro, the Chow ring of such a variety that has an affine stratification into cells

has a basis given by distinct equivalence classes of the closures of those cells. For projective space

Pn(F ), this means for any complete flag F•, A(Pn(F )) has its set of rational equivalence classes

of Schubert varieties (which are distinct) {[ΩiF•] | i = 1, . . . , n + 1} as a basis. Hence, since

the product of vectors will still be a vector and can be expressed in terms of this basis, it suffices

(after knowing transversality holds) to know the intersections of Schubert varieties to know how

multiplication works in the ring (the intersection theory of Pn(F ) in general).

For P2, the Chow ring A(P2) ∼= Z[ζ]/(ζ3), where ζ = [Ω2O•]. Here, a basis is given by the

Schubert varieties {1, ζ, ζ2}, where the multiplicative identity 1 = [Ω1O•] represents all of P2,

ζ represents a line (copy of P1) in P2, and ζ2 = [Ω3O•] represents a point in P2. The fact that

ζ2 = [Ω3O•] represents that every two lines in P2 intersect in a point, which we observed earlier.

Note that the degree of ζ corresponds to codimension. Furthermore, it can be shown that the

rational equivalence class of every irreducible projective plane curve V (f) of degree d in A(P2) is
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dζ . This leads to understanding general intersections of curves (solutions to polynomial systems)

in P2.

Theorem 1.7.13. (Bézout’s Theorem) Let X and Y be irreducible plane curves in P2 of degrees d

and e, respectively. If X ∩Y is a transverse intersection, then X ∩Y consists of de distinct points.

Proof. Since transverse [X ∩ Y ] = [X][Y ] = (dζ)(eζ) = (de)ζ2, the class in A(P2) representing

de points.

This construction generalizes to Pn, as A(Pn) ∼= Z[H]/(Hn+1), which has the Schubert va-

rieties {1, H, . . . , Hn} as basis. Here again irreducible hypersurfaces of degree d have rational

equivalence class dH , where H = [Ω2O•] is the class of a hyperplane (copy of Pn−1 in Pn). There

is a more general notion of degree for a subvariety of any codimension (not just hypersurfaces),

and an irreducible subvariety of degree d and codimension k in general has rational equivalence

class dHk. Hence, we get the generalized versions of Bézout’s Theorem:

Theorem 1.7.14. If X and Y are irreducible subvarieties in Pn of complementary codimensions k

and l (meaning k + l = n), and degrees d and e, respectively, then if X ∩ Y is transverse, X ∩ Y

consists of de distinct points. Furthermore, if X1, . . . , Xn are irreducible hypersurfaces of degrees

d1, . . . , dn that intersect generically transversely, then X1 ∩ · · · ∩Xn consists of d1 · · · dn distinct

points.

Proof. Just as for Bézout’s Theorem above.

1.8 Monodromy Groups of Branched Covers

We first give some final preliminaries from topology and algebraic geometry.

Definition 1.8.1. Let B be a connected topological space. A covering space of B is a topological

space X , equipped with a continuous map π : X → B, with the property that for all b ∈ B, there

exists an open set Ub ⊆ B containing b and a discrete space Db such that π−1(Ub) =
⋃
x∈Db

Vx

and π|Vx : Vx → Ub is a homeomorphism for all x ∈ Db. The map π is called a covering, the open
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sets Vx are called sheets, which are uniquely defined up to homeomorphism, and the discrete set

π−1({b}) is called the fiber of b for all b ∈ B. It can be shown that π is connected and that the

cardinality of the discrete set Db is the same for all b ∈ B, called the degree of the covering.

One reason that covering spaces are important in topology is that they satisfy the lifting prop-

erty: Let B be a connected and locally connected based topological space with base point b ∈ B,

and let π : X → B be a degree d covering with fiber S = π−1({b}) = {x1, . . . , xd}. For a loop

γ : [0, 1] → B based at b (i.e. γ(0) = γ(1) = b), for each xi we obtain a lift to the covering

space γ̃i : [0, 1] → X , which is a path (not necessarily a loop) with γ̃i(xi) ∈ S. In other words,

for each base point b ∈ B and loop γ based at b, we obtain a permutation of S, i.e. an element of

Sd. Considering all such base points and loops, we get a subgroup of Sd, called the monodromy

group of the covering π : X → B.

Now we move from topology to algebraic geometry.

Definition 1.8.2. A morphism of projective varieties X ∈ Pn(F ) and Y ⊆ Pm(F ) is a function

f : X → Y whose component functions are all homogeneous polynomials of the same degree, who

do not vanish simultaneously on Y . A rational function on a projective variety X ⊆ Pn(F ) is any

rational polynomial h = P
Q

(P,Q ∈ F [x0, . . . , xn]) equivalent to P ′

Q′ where P ′, Q′ ∈ F [x0, . . . , xn]

are homogeneous of the same degree, and Q′ does not vanish identically on X (there exists some

p ∈ X with Q′(p) ̸= 0). Here by equivalent we mean that PQ′ − P ′Q vanishes at every point

of X . The set of rational functions on X forms a field, called the field of rational functions on

X , denoted by F (X). For any morphism of projective varieties f : X → Y , there is an induced

field homomorphism f ∗ : F (Y ) → F (X), given by f ∗(h) = h ◦ f . If the image of f is dominant

(meaning its image is dense, surjective being a special case), then f ∗ is injective, giving a field

extension F (X)/F (Y ).

Definition 1.8.3. A degree d branched covering is a morphism of projective varieties f : X → B

such that there exists a dense open subset U ⊆ B with f : f−1(U) → U a degree d covering

space map. Since such a map is dominant by definition, it induces a field extension on the fields of

rational functions F (X)/F (B).
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A classic example of monodromy is for the branched covering given by π : C → C, π(z) = z2.

Away from z = 0, this is a degree 2 covering space. Taking a non-zero base point (say z = 1 ∈ C),

that base point will have two distinct square roots, and lifting a loop based at the base point will

either send the roots to themselves, or will permute the roots (depending on what is called the

winding number of the loop). The case where the roots are permuted is depicted in Figure 1.16.

Figure 1.16: Monodromy for a degree 2 branched cover

Now that we’ve covered the preliminaries and motivation for projective algebraic geometry,

having introduced and showed the usefulness of many types of algebraic structures (groups, rings,

fields, and vector spaces) and geometric structures (topological spaces and manifolds), we com-

bine everything together to define Galois groups in enumerative geometry. Enumerative geometry

considers counting the number of geometric objects that interact with other geometric objects in

some prescribed way, and these Galois groups will encapsulate the symmetries of the solution set.

A classical question in enumerative geometry is “how many lines are on a nonsingular cubic

surface?" Here by a nonsingular cubic surface, we mean the projective hypersurface V (f) ∈ P3

given as the solution to a homogeneous degree 3 polynomial equation in 4 variables: f(x, y, z, w) =

a1x
3+a2x

2y+a3x
2z+a4x

2w+a5xy
2+a6xyz+a7xyw+a8xz

2+a9xzw+a10xw
2+a11y

3+a12y
2z+

a13y
2w + a14yz

2 + a15yzw + a16yw
2 + a17z

3 + a18z
2w + a19zw

2 + a20w
3 = 0 (here the ai ∈ C.

By nonsingular here we mean that the gradient vector (from multivariable calculus) ∇f = 0⃗ has

no solutions in P3. The answer for the number of lines is the well-known Cayley-Salmon Theorem

(two papers in 1849), which is that they all contain 27 lines, independent of which nonsingular
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cubic surface you choose. (See APPENDIX A. for a proof after more preliminaries from Chapter

2).

Figure 1.17: Two nonsingular cubic surfaces, the second with 27 lines revealed

While this answer of 27 lines is already remarkable, one can ask further ask “what are the

symmetries of these lines?", in the same way that we ask about the symmetries of an equilateral

triangle (the permutation group S3) or the square (the dihedral group of order 8). Recall that while

the triangle with labeled vertices can achieve all possible permutations of its vertices via rigid

motions, the square with labeled vertices cannot, due to pairs of diagonal vertices being preserved

under reflections and rotations.

For a nonsingular cubic surface, we similarly consider a labeling of its 27 lines, but we will

be considering monodromy permutations as our geometric transformations rather than reflections

and rotations. Recall that the homogeneous polynomial defining a nonsingular cubic surface has

20 coefficients. As one varies these coefficients in a loop, at each step one has a new cubic surface

with 27 lines moving along the loop. Since we are varying in loop, eventually we get back to

the coefficients that we started with, and so arrive at the same nonsingular cubic surface with its

original set of 27 lines. However, the labeling that we imposed on these lines may have permuted,

depending on the loop. Considering all possible loops, we obtain the our desired symmetry group,

the monodromy group of our cubic surface. This is made precise by considering the incidence

variety of pairs of cubic surfaces with their lines, and its projection onto the cubics, which is
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a branched covering of degree 27. Away from the singular cubic surfaces, this is a degree 27

covering space map, which has a monodromy group as described earlier. As a note, by P19
cubics we

mean that the set of all cubics are given by the 20 coefficients (C20) up to scaling, since multiplying

f(x, y, z, w) = 0 by a non-zero scalar does not change the solution set. Also by G(1,P3), we mean

the set of lines in P3, and will make this notation precise in the next chapter.

Γ := {(ℓ, F ) ∈ G(1,P3)× P19
cubics : F |ℓ ≡ 0}

?

P19
cubics

Schläfli (1858) showed that 27 lines on a nonsingular cubic surface have a remarkable incidence

configuration with symmetry group having 58140≪ 27! permutations. Further, this group encodes

how every line intersects exactly 10 other lines and that every pair of disjoint lines intersects exactly

5 other lines, giving geometric obstructions to obtaining all possible permutations of the lines.

Gradually recognized by Cartan (1896), Coble (1915–17), and du Val (1936) as the Weyl group of

type E6, and so we will refer to this enriched Galois group as E6 from now on.

Further, this monodromy group is also a Galois group in the traditional sense. Our above

branched covering is a map of algebraic varieties, and the induced algebraic extension C(Γ)/C(P19)

of function fields has degree 27. IfK is the normal closure of C(Γ)/C(P19), then Gal(K/C(P19)) =

E6 (many proofs of this given in the 20th century).

As the problem of 27 lines on a nonsingular cubic surface was found to have a remarkable

symmetry group, we call its Galois group E6 enriched (with additional structure) because it was

not the full symmetric group S27. In general if an enumerative geometry problem has d solutions,

we say that its Galois group is full-symmetric if it is Sd, and it is enriched otherwise. We also

use these terms to describe the problem as full-symmetric or enriched as well. One can then

ask, besides 27 lines on a nonsingular cubic surface, what other enriched enumerative geometry

problems are there? Given an enumerative geometry problem, we have the general framework,

with monodromy and Galois groups defined in the same way as for cubic surfaces.
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Figure 1.18: 9 Flexes on a Cubic and 28 Bitangents to a Quartic

Γ ⊆ {Solution Space} × {Parameter Space} .

?

{Parameter Space}

The equivalence of monodromy groups and Galois groups in the context of enumerative geom-

etry (not just for cubic surfaces) was shown by Harris over C using tools from complex analysis,

but the ideas trace back to Hermite. See APPENDIX B for a modern proof given by Sottile and

Yahl, with ideas originally presented by Vakil (which uses scheme theory and has the appeal of

being true over any field).

By 1979, in addition to 27 lines on a nonsingular cubic surface, there were only two other

known enumerative geometry problems to have enriched Galois groups - the problems of 9 flexes

on a nonsingular cubic (degree 3) plane curve, and 28 bitangents to a nonsingular quartic (degree

4) plane curve.

In his 1979 landmark paper “Galois Groups of Enumerative Problems", Harris naturally gen-

eralized the three known enriched problems, and showed that in each case, the generalizations

to higher dimensions had full-symmetric Galois groups. Additionally, he showed that the famous

problem of 3264 conics tangent to five general conics had a Galois group that was fully-symmetric,

again revealing how rare enriched Galois groups are. This stalled progress in the field until 2003,

when Derksen and Vakil found an enriched Galois problem involving six 4-dimensional subspaces

in C8 intersecting four general 4-dimensional subspaces, each in dimension at least 2. This type
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of enumerative geometry problem, involving only linear spaces, is called a Schubert problem. In

2006, Vakil was able to generalize this Schubert problem to an infinite family of Schubert problems

with enriched Galois groups, leading to the program of classifying all possible enriched Schubert

problems, which is the focus of the rest of this dissertation.
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2. SCHUBERT PROBLEMS

In the last section, we discussed Galois groups in the context of enumerative geometry, and

the historical search for enriched Galois groups. The first first infinite family of enriched Galois

groups (by Vakil) was found for enumerative geometry problems only involving linear spaces.

Such problems are called Schubert problems, and the study of Schubert problems is called Schubert

calculus, each named after the mathematician Hermann Schubert (1841-1911), not the famous

Austrian composer, Franz Schubert. We introduce Schubert problems with an important problem

called the Problem of Four Lines, which while insightful, does not have an enriched Galois group.

We then give the framework for Schubert problems, which have three main components made

precise by the notions of Grassmannians, flags, and Schubert Varieties. We then dive into the

details on Schubert Galois groups. Finally, we introduce Schubert calculus for partial flag varieties

of various types, and describe how Schubert problems can be solved using cohomology.

Figure 2.1: Hermann and Franz Schubert
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2.1 The Problem of Four Lines

The Problem of Four Lines is an important motivating example for Schubert calculus. Given

four general lines ℓ1, ℓ2, ℓ3, and ℓ4 in P3 (so planes through the origin in C4), how many other

lines in P3 intersect each of the ℓi simultaneously? Here by general lines, we mean that the ℓi do

not intersect one another, that no three of them are coplanar (lie on a plane in P3), and a bit more.

Imagining these lines in R3 (the space that we seemingly live in), it is not obvious at first glance

that there should be any lines that intersect four general lines in space. Or if there were any, why

would there not be infinitely many such solutions? Incredibly, there turns out to be a finite number

of solutions, and there is a geometric reason for this being the case (all of this typical for Schubert

problems in general).

Focusing on the first three lines, ℓ1, ℓ2, and ℓ3, it is a classical result that they determine a unique

hyperboloid of one sheet in P3. This hyperboloid is a quadric surface (a projective hypersurface

given as the vanishing of a homogeneous degree 2 polynomial), with two rulings of lines on it (can

be written as the union of infinitely many non-intersecting lines in two different ways). The three

lines ℓ1, ℓ2, and ℓ3 belong to the first ruling, and the second ruling consists of the infinitely many

lines that intersect each of ℓ1, ℓ2, ℓ3 simultaneously (and is the grid of lines depicted in Figure 2.2).

Hence, if this were the Problem of Three Lines, there would be infinitely many solutions - but it is

not! We must also consider ℓ4, which intersects the hyperboloid in two points (since it is degree 2),

and each of these points is on a unique line in the second ruling of the hyperboloid. Calling these

lines m1 and m2, they are the solutions to our Problem of Four Lines - there are exactly 2 lines that

intersect four general lines in P3.

Furthermore, one can investigate the Galois group of the Problem of Four Lines by looking at

the monodromy group of a branched cover, where a point of the base space (parameter space) is a

choice of four general lines, and the fiber above that point is the two solution lines. Since there are

only two solutions, the monodromy group is a subgroup of S2. By fixing ℓ1, ℓ2, and ℓ3 (which fixes

our hyperboloid), we can get a loop in our parameter space by varying our fourth line ℓ4 in a loop.

One such loop is rotating ℓ4 180◦ about the point p in Figure 2.2, which swaps the intersection
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points of ℓ4 with the hyperboloid, therefore permuting the solution lines m1 and m2. Thus, the

Galois group for this problem is all of S2, and so not an enriched Galois group.

Figure 2.2: Two Solutions to the Problem of Four Lines

As a fun fact, the classic result that three general lines in space determine a unique hyperboloid

of one sheet is credited to Christopher Wren, the English architect responsible for many famous

landmarks, including St. Paul’s Cathedral in London.

What is so remarkable about obtaining 2 solutions is that the answer didn’t depend on the

particular four lines we started out with. Each choice of four general lines, the parameters for

the Problem of Four Lines, determines a hyperboloid (dependent on the first three lines) with two

rulings, and the two solutions lines are in the second ruling of that hyperboloid. This theme was

originally coined as “conservation of number" by Schubert, and will be true of all the Schubert
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Figure 2.3: Christopher Wren and St. Paul’s Cathedral

problems that we consider.

Informally, a Schubert problem involves a vector space V over a field F , and asks how many

k-dimensional subspaces of V intersect some fixed (general) subspaces of V in certain prescribed

dimensions. Since lines in P3 are 2-dimensional subspaces (2-planes) of C4, the Problem of Four

Lines can be re-described in this language as “how many 2-planes in C4 intersect four general

2-planes in C4, each in dimension 1 (a line). Hence the answer is 2 2-planes in C4. To describe a

general Schubert problem, there are three essential components that we must formalize:

1. Our solutions, which k-dimensional subspaces of V (Formalized by Grassmannians)

2. The fixed general subspaces we want our solutions to intersect. These will be the parameters

for our problem (Formalized by Complete Flags)

3. How our solutions intersect the fixed general subspaces in certain prescribed dimensions

(Formalized by Schubert Varieties)

The next two sections give the desired formalizations, allowing us to rigorously understand all

that goes into a Schubert problem.
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2.2 Grassmannians

Grassmannians naturally generalize projective spaces, and are ubiquitous in differential and

algebraic geometry. We define them, and describe their structure as algebraic manifolds and pro-

jective varieties. The solutions to Schubert problems will be a finite subset of a Grassmannian.

Definition 2.2.1. Let V be a vector space over a field F . The Grassmannian of k-planes in V is

Gr(k, V ) = {subspaces H ⊆ V | dim(H) = k}. If V = F n, we write Gr(k, n) for Gr(k, F n).

Projecting down a dimension, even though Pn is not a vector space, we abuse notation and write

G(k,Pn) = {linear subsets H ⊆ Pn | dim(H) = k} = Gr(k + 1, n+ 1)

Note that projective spaces are Grassmannians: Pn(F ) = Gr(1,Fn+1). In Stiefel coordinates

(a generalization of homogeneous coordinates), we will be viewing the Grassmannian Gr(k, n)

of k-planes in Fn as the set Matkn×k(C) of rank k n × k matrices under an equivalence relation,

where two n×k matricesA andC (both of full rank k) are equivalent if there is an invertible matrix

P ∈ GL(k, F ) such that AP = C. Like how vectors in Pn represent the line that they span, and so

are equivalent up to non-zero scalar multiple, the k-plane represented by a full-rank n×k matrix is

recovered by taking the span of the columns of the matrix, and two matrices equivalently represent

the same k-plane if their columns are different bases for the same k-dimensional subspace.

Note since elements of Gr(k, n) represented as matrices have full rank k, by definition that

matrix has a maximal minor (k × k sub-matrix) with non-zero determinant. We will be using

symbols α and β to represent k-tuples of row indices, i.e. for example α = (α1, . . . , αk) for some

1 ≤ α1 < α2 < . . . < αk ≤ n. Using this notation, a matrix M ∈ Gr(k, n) has
(
n
k

)
maximal

minors, and at least one, say Mα, the sub-matrix of M with rows α1, . . . , αk, has det(Mα) ̸= 0

(like how at least one entry of a vector in projective space must be non-zero).

The algebraic manifold structure on Gr(k, n) is then given as follows:

1. For each of the
(
n
k

)
α’s, we have that the coordinate charts of Gr(k, n) are Uα, the set of

rank k, n× k matrices (under equivalence) M with minor Mα having non-zero determinant.

Like projective space, each equivalence class in Uα has a unique representative with rows
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α being the identity matrix. (since det(Mα) ̸= 0, just multiply on the right by M−1
α to get

this representative). Thus we will see that Gr(k, n) is k(n − k) dimensional (removing the

k rows giving the identity matrix, there are k(n− k) coordinates remaining).

2. The coordinate map of Uα is φα : Uα → Ak(n−k)(F ), where φ(M) = MM−1
α , with rows α

(they will form an identity matrix) then omitted. Note here that Ak(n−k)(F ) and the set of

(n − k) × k matrices are being identified. Again, on the above unique representatives, this

will just be a projection map away from the rows given by α.

3. φ−1
α : An(n−k)(F ) → Uα takes an (n−k)×k matrix B, and makes an n×k matrix M out of

it with rows α being the identity, other rows being filled in by those of B (in the same order).

4. The change of coordinates map φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) then takes a

(n− k)× k matrix B and applies the following sequence of transformations to it:

(1) Makes an n× k matrix M out of it with rows α being the identity, other rows being

filled in by those of B (in the same order)

(2) Multiply MM−1
β

(3) Omit rows of the product coming from β Since the entries of the resulting matrix

are all rational polynomials (by Cramer’s rule for inverses of matrices) defined everywhere

on Uα ∩ Uβ , this endows Gr(k, n) with the structure of a k(n − k)-dimensional algebraic

manifold.

On the other hand, the injective Plücker embedding Gr(k, n) → P(
n
k)−1(F ) sending M

to [det(Mα)] (ordered in some consistent way) gives Gr(k, n) the structure of a smooth pro-

jective variety. This map is well defined since MP for any P ∈ GLk(F) would get sent to

det(P )[det(Mα)] = [det(Mα)] (since in projective space). More importantly, the determinants

of minors of a matrix are viewed as its coordinates, and these determinants (as coordinates) are

precisely the set of solutions to a set of homogeneous polynomial equations (called Grassman-

Plücker relations):
∑k+1

l=1 (−1)lWα1,...,αk−1,βlWβ1,...,βl+1
= 0 (where in the 2nd W , βl is omitted).
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Here the indices of the W ’s refer to the rows of the minor.

For the Problem of Four Lines considered earlier, the relevant Grassmannian is G(1,P⊯) =Gr(2, 4).

The Plücker embedding takes a matrix



x11 x12

x21 x22

x31 x32

x41 x42


to the point



W1,2

W1,3

W1,4

W2,3

W2,4

W3,4


∈ P5 (

(
4
2

)
−1 = 5), where

Wi,j is the determinant xi1xj2−xi2xj1 of the 2×2 minor

xi1 xi2

xj1 xj2

. One can then verify that the

coordinatesWi,j satisfy the polynomial equationW1,2W3,4−W1,3W2,4+W1,4W2,3 = 0, and in fact

the image of the embedding is defined by this single equation, so Gr(2, 4) is a quadric hypersurface

in P5 (so degree 2, codimension 1, and so dimension 4.

One can also see the 4-dimensional manifold structure of Gr(2, 4) from the Stiefel coordinates,

since for example U1,2 =



1 0

0 1

y31 y32

y41 y42


, which as 4 coordinates outside of the 2× 2 identity subma-

trix. Applying the Plücker embedding to just this affine chart gives



1

y32

y42

−y31

−y41

y31y42 − y32y41


∈ A5

W1,2
⊆

P5(F ). This generalizes, revealing that the Plücker embedding takes affine charts of Gr(k, n) to

the corresponding affine charts of P(
n
k)−1(F ) (indexed by the same minor).

For those familiar with wedge products of vector spaces, he injective Plücker embedding

can be made coordinate free (and is often given this way) by Gr(k, V ) → P(Λk(V )), sending
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Span(w1, . . . , wk) to [w1 ∧ . . .∧wk]. With this perspective, the Grassmannian is identified with its

image and is the set of totally decomposable ω ∈ P(Λk(V )).

2.3 Flags and Schubert Varieties

Now that we are familiar with Grassmannians (where the solutions to our Schubert problems

will lie), we need to formalize the subspaces our solutions will be required to intersect, and how our

solutions will do so in prescribed dimensions. This need for formalization leads us to generalize

the Schubert decomposition of Pn(F ) into Schubert cells and Schubert varieties to Grassmannians.

Recall from Section 1.7 that a complete flag F• is a saturated chain of subspaces of a vector space

V . Given such a flag, we can consider how k-dimensional subspaces of V interact with that flag

(such as considering all subspaces that intersect the Fi subspace in our flag in dimension at least

ai ∈ N). This partitions the Grassmannian Gr(k, V ) into Schubert cells, the closures of which

will be our Schubert varieties for the Grassmannian (closures in the Zariski topology, inherited as

a projective subvariety of Pn(F )) via the Plücker embedding).

Definition 2.3.1. A Schubert condition on Gr(k, n) is an increasing sequence α of k integers in

{1, . . . , n}, i.e. α = (α1, . . . , αk) with α1 < · · · < αk. We write α = α1α2 · · ·αk for the Schubert

condition in one-line notation. The set of all Schubert conditions for Gr(k, n) is denoted
(
[n]
k

)
.

The (Coxeter) length of a Schubert condition α ∈
(
[n]
k

)
is |α| =

∑k
i=1(αi − i). For any α ∈

(
[n]
k

)
and flag F• ∈ Fl(n), the corresponding Schubert variety is ΩαF• = {H ∈ Gr(k, V )| dim(H ∩

Fn+1−αk+1−i
) ≥ i for i = 1, . . . , k}. Note that |α| gives the codimension of the Schubert variety

ΩαF• as a subvariety of Gr(k, n) (i.e. dim(ΩαF•) = k(n− k)− |α|. The Bruhat order on
(
[n]
k

)
is

the partial order where α ≤ β if αi ≤ βi for all i = 1, . . . k. For any α ∈
(
[n]
k

)
and flag F• ∈ Fl(n),

the corresponding Schubert cell is Ω◦
αF• = ΩαF• \

⋃
β ̸≤αΩβF•.

The above definition uses what is called the “codimension convention", since the length of

a Schubert condition gives the codimension of the corresponding Schubert variety. This is our

standing convention (unless mentioned otherwise, which we will do in a moment), since many

authors alternatively index Schubert varieties using partitions, the length of the partition also giving
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the codimension of the Schubert variety. On the other hand there is a “dimension convention",

which is easier to write down, where ΩαF• = {H ∈ Gr(k, V )| dim(H ∩Fi) ≥ i for i = 1, . . . , k}.

To simplify calculations, we only use the dimension convention for the following example (getting

the corresponding Schubert conditions in codimension notation via α− i→ n+ 1− αk+1−i):

We find all the Schubert cells and Schubert varieties in the Schubert decomposition of G(1,P⊯)

(again the Grassmannian relevant for the Problem of Four Lines). By a flag in P3 (instead of C4),

we mean a point F0 = p ∈ P3 on a line F1 = ℓ ⊆ P3, contained in a plane F2 = H ⊆ P3, where

F3 = P3. Hence in dimension notation, we have ΩαF• = {lines µ ∈ G(1,P3)| dim(µ ∩ Fαi−1) ≥

i − 1 for i = 1, 2, 3}. Some of these dimension of intersection conditions are already guaranteed

to be satisfied, by the formula dim(W1 ∩W2) ≥ dim(W1)+ dim(W2)− dim(V ) from Section 1.6

(and then projectivized). In this case, dim(µ ∩ P3) ≥ 1 and dim(µ ∩H) ≥ 0 are always satisfied.

Some dimension of intersection conditions are also implied by others. Now, there are 6 Schubert

conditions in G(1,P3): {34, 24, 23, 14, 13, 12}, and the corresponding Schubert varieties (using

the dimension convention) are:

• Ω34F• = {µ ∈ G(1,P3) | dim(µ ∩H) ≥ 0 and dim(µ ∩ P3) ≥ 1} = G(1,P3)

• Ω24F• = {µ ∈ G(1,P3) | dim(µ∩ℓ) ≥ 0 and dim(µ∩P3) ≥ 1} = {µ ∈ G(1,P3) | µ∩ℓ ̸=

∅}

• Ω23F• = {µ ∈ G(1,P3) | dim(µ∩ℓ) ≥ 0 and dim(µ∩H) ≥ 1} = {µ ∈ G(1,P3) | µ ⊆ H}

• Ω14F• = {µ ∈ G(1,P3) | dim(µ∩p) ≥ 0 and dim(µ∩P3) ≥ 1} = {µ ∈ G(1,P3) | p ∈ µ}

• Ω13F• = {µ ∈ G(1,P3) | dim(µ ∩ p) ≥ 0 and dim(µ ∩ H) ≥ 1} = {µ ∈ G(1,P3) | p ∈

µ ⊆ H}

• Ω12F• = {µ ∈ G(1,P3) | dim(µ ∩ p) ≥ 0 and dim(µ ∩ ℓ) ≥ 1} = {µ ∈ G(1,P3) | µ = ℓ}

Unlike the Schubert subvarieties of G(1,P3), the Schubert cells are disjoint, and can be de-

scribed as follows:
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Figure 2.4: The Schubert Decomposition of G(1,P3) (Dimension Convention)

• Ω◦
34: Lines that intersect the plane H , but do not intersect the line ℓ (this is the general case

for a line in P3, and the other conditions below are specializations)

• Ω◦
24: Lines that intersect the line ℓ, but do not contain the point p and are not contained in

the plane H

• Ω◦
23: Lines that are contained in the plane H (and so must intersect the line ℓ as a conse-

quence), but do not contain the point p

• Ω◦
14: Lines that contain the point p (and so must intersect the line ℓ as a consequence), but

are not contained in the plane H

• Ω◦
13: Lines that are contained in the plane H and contain the point p, but are distinct from

the line ℓ

• Ω◦
12: The line ℓ itself
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2.4 Schubert Problems and Their Galois Groups

Now that we have formalized the separate components of a Schubert problem (Grassmannians,

flags, and Schubert varieties), we are ready to precisely define Schubert problems in this language,

as well as their corresponding Galois groups.

Definition 2.4.1. Given a list of Schubert conditions {α1, . . . , αr} ∈
(
[n]
k

)
, with |α1|+ · · ·+ |αr| =

k(n − k) (the dimension of Gr(k, n)), a Schubert problem is to compute |Ωα1F 1
• ∩ . . . ∩ ΩαrF r

• |

in Gr(k, n). Choosing specific, but general, complete flags {F 1
• , . . . , F

r
• } yields an instance of the

Schubert problem.

This intersection gives the number of k-dimensional subspaces of F n that intersect the sub-

spaces given by {F 1
• , . . . , F

r
• } in dimensions prescribed by {α1, . . . , αr}. Note that for each

Gr(k, n), there are finitely many Schubert problems, each of which can be computed as the inter-

section of Schubert varieties. Since the codimensions of the Schubert varieties in the intersection

add up to the dimension of Gr(k, n), one expects this intersection to be a finite number of points,

giving the finitely many solutions to the Schubert problem. Running over all n and 1 ≤ k ≤ n, this

gives a wealth of enumerative geometry problems, tens of millions of which can be realistically (in

one’s lifetime) computed using computer software (see the next section for details).

We now return to the Problem of Four Lines, which be formalized as a Schubert problem as

follows (using the dimension convention to match our previous discussion of G(1,P⊯)): We fix

four general lines in space as before ℓ1, ℓ2, ℓ3, and ℓ4. For each ℓi (i = 1, 2, 3, 4), we complete it to

a flag F i
• by choosing a point F i

0 = pi ∈ ℓi = F i
1, and by choosing a plane F i

2 = Hi ⊆ P3 = F i
3.

Now, we have four general flags F 1
• , F

2
• , F

3
• , F

4
• ∈ Fl(P⊯). The condition that a line µ ∈ Gr(1,P⊯)

intersects ℓi (µ ∩ ℓi ̸= ∅) is then given by the Schubert variety Ω24F
i
• ⊆ Gr(1,P3). Thus, the

condition that a line µ ∈ Gr(1,P⊯) intersects all four of the ℓi simultaneously is if and only if

µ ∈ Ω24F
1
• ∩ Ω24F

2
• ∩ Ω24F

3
• ∩ Ω24F

4
• . Note that these Schubert varieties are each distinct,

even though they all have the same Schubert condition, since the flags used to define them are

distinct. Therefore, the fact that there are 2 solutions to the Problem of Four Lines is equivalent
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to the statement |Ω24F
1
• ∩ Ω24F

2
• ∩ Ω24F

3
• ∩ Ω24F

4
• | = 2, which can be computed using algebraic

geometry (which we describe in a few different ways later on). Furthermore, it should be noted

that while the Problem of Four Lines was able to be solved using a geometric argument involving a

hyperboloid of one sheet, in general Schubert problems have no such argument, and so interpreting

the problem as understanding the intersection of Schubert varieties is crucial to finding solutions,

and studying them further.

Given a Schubert problem defined by the Schubert conditions α1, . . . , αr ∈
(
[n]
k

)
,

Γ := {(µ, F 1
• , . . . , F

r
• ) | µ ∈ ΩαiF i

• for all i = 1, . . . , r}

?

Fl(n)r

is the corresponding branch cover, where µ ∈ Gr(k, n). There is a dense open subset of Fl(n)

where the projection is a degree d covering map, and we say that an r-tuple of flags in that open

subset is a general choice of flags. Fixing general (F 1
• , . . . , F

r
• ) ∈ Fl(n)r, its fiber is an instance

of the Schubert problem with its d solutions. As for the Problem of 27 Lines on a Nonsingular

Cubic Surface, we have a monodromy group for this branched cover, which is isomorphic to the

Galois group of the induced inclusion of function fields G = Gal(F (Γ)/F (Fl(n)r)). Since this

group permutes the solutions to the instance of the Schubert problem, it is a subgroup of Sd. If

G = Sd, we again say that the Galois group is full-symmetric, and otherwise that the Galois group

G is enriched (and also say that the Schubert problem is enriched).

In 2006, Derksen and Vakil discovered the enriched Schubert problem (using codimension no-

tation) |Ω1256F
1
• ∩Ω1256F

2
• ∩Ω1256F

3
• ∩Ω1256F

4
• | = 6 in Gr(4, 8). This problem is a generalization

of the Problem of Four Lines, and states that given four general 4-planes H1, . . . , H4 ∈ Gr(4, 8),

there are exactly 6 other 4-planes µ ∈ Gr(4, 8) such that dim(µ ∩ Hi) ≥ 2 for all i = 1, 2, 3, 4.

Hence, the Galois group is a transitive subgroup of S6, and in fact is an isomorphic copy of S4 in

S6, and so has 24 < 720 elements and is enriched.

Vakil later generalized this example into an infinite family of enriched Schubert problems, with

problems in every Grassmannian Gr(k, n) for 4 ≤ k ≤ n− 4. But this does not account for every
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enriched Schubert problem in Grassmannians! Later, Martín del Campo, Sottile, and Williams

classified all enriched Schubert problems in Gr(4, 8) and Gr(4, 9) (2019). Their classification

found that all enriched Galois groups in Gr(4, 8) and Gr(4, 9) have the structure of being iterated

wreath products of symmetric groups, and so the current conjecture is that for Grassmannians, all

enriched Galois groups will be iterated wreath products of symmetric groups - the Inverse Galois

Problem for Schubert problems in Grassmannians still open.

2.5 Partial Flag Varieties

As it turns out, the Schubert decomposition and Schubert problems make sense in more general

settings than Grassmannians. In this section we introduce partial flag varieties and their Schubert

problems, and then in the next section introduce variants of Grassmannians and more generally

partial flag varieties.

Recall that the partial flag variety (or partial flag manifold) of shape (a1, . . . , as;n) is the

set of partial flags

Fl(a1, . . . , as;n) = {(Fa1 , . . . , Fas) ∈ Gr(a1, n)× · · · ×Gr(as, n) | Fa1 ⊆ · · · ⊆ Fas},

which is a subvariety of Gr(a1, n) × · · · × Gr(as, n) (considered so after using the s-fold Segre

embedding on the products of the Plücker embeddings of the relevant Grassmannians), since in-

clusions of vector spaces can be encoded by rank conditions of matrices, which are polynomi-

als). Note that Grassmannians are a special type of partial flag varieties: Gr(k, n) = Fl(k;n),

also called a one-step partial flag variety. Additionally, the (full, or complete) flag variety

Fl(n) = Fl(1, 2, . . . , n− 1;n) is a special case of partial flag variety.

Theorem 2.5.1. Let π : X × Y → Y be a surjective morphism of projective varieties, and let

d ∈ N. If dim(π−1({y}) = d for all y ∈ Y , then dim(X) = d+ dim(Y ).

To compute the dimension of the variety Fl(a1, . . . , as;n), we first consider the projection of a

two-step partial flag variety π : Fl(a1, a2; s) → Gr(a2, s). For any a2-plane H ∈ Gr(a2; s),

it fiber π−1({H}) = {(Fa1 , H) | Fa1 ⊆ H} ∼= Gr(a1, a2). Hence by the Theorem 2.5.1,
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dim(Fl(a1, a2;n)) = dim(Gr(a2, n)) + dim(Gr(a1, a2)) = a2(n − a2) + a1(a2 − a1). Similarly,

considering the projection π : Fl(a1, . . . , as;n) → Gr(as, n), and any as-plane H ∈ Gr(as, n),

its fiber π−1({H}) ∼= Fl(a1, . . . , as−1; as), so using induction on the Theorem on the Dimen-

sion of Fibers, dim(Fl(a1, . . . , as;n) = (
∑s−1

k=1 ak(ak+1 − ak)) + as(n − as). In particular,

dim(Fl(n)) = 1(2−1)+2(3−2)+ · · ·+(n−1)[n− (n−1)] =
∑n−1

k=1 k = n(n−1)
2

=
(
n
2

)
. We can

also see the dimension for partial flag varieties arising from the construction of Fl(a1, . . . , as;n)

as an algebraic manifold, but first we need the following index sets:

Definition 2.5.2. A permutation σ ∈ Sn has a descent in position i ∈ [n−1] if σ(i) > σ(i+1), and

the descent set of a permutation is D(σ) = {i ∈ [n − 1] | σ(i) > σ(i + 1)}. The set of permuta-

tions with possible descents only in positions a1, . . . , as is D(a1, . . . , as;n) = {σ ∈ Sn | D(σ) ⊆

{a1, . . . , an}}, which will be our index set for our local coordinate charts and Schubert decompo-

sition of Fl(a1, . . . , as;n). Note that |D(a1, . . . , as;n)| =
(
n
a1

)(
n−a1
a2−a1

)(
n−a2
a3−a2

)
· · ·

(
n−as−1

as−as−1

)
.

The index set
(
[n]
k

)
for the local coordinate charts and Schubert decomposition of Gr(k, n) can

be naturally identified with D(k;n), where in one-line notation, only the first k images of the

permutation σ are written to obtain α. This truncated representation α of a permutation σ is called

a partial permutation, and the full permutation σ can be uniquely recovered by concatenating the

integers [n] \ {α1, . . . , αk}, ordered from least to greatest, to the end of α. This works because no

descents except in position k guarantee that the first k integers of σ ∈ D(k;n) are increasing, and

then a potential descent, and then increasing after that. Similarly, any σ ∈ D(a1, . . . , as;n) can be

represented uniquely by a partial permutation α, by only writing the first as images of σ in one-line

notation, with the full permutation σ recovered by concatenating with the remaining elements of [n]

in increasing order at the end of α. Our convention is to represent elements of D(a1, . . . , as;n) by

their partial permutation representatives α, but it is sometimes useful to complete the permutation

to σ ∈ Sn. For example, we can define the length of permutation to be |σ| = |{(i, j) ∈ [n]× [n] |

i < j and σ(i) > σ(j)}, and this agrees with our definition of length for α ∈
(
[n]
k

)
. Finally, note

that D(1, 2, . . . , n − 1;n) = Sn, so the full flag manifold is simply indexed by permutations σ

(with no restrictions on descents).
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For any α ∈ D(a1, . . . , as;n), we obtain a local coordinate chart Uα ⊆ Fl(a1, . . . , as;n) as

the set of rank-as, n × as matrices. Here, Fai is recovered as the span of the first ai columns of

the matrix for all i = 1, . . . , s. As for the Stiefel coordinates for the Grassmannian, these matrices

are only unique up to change of basis, but this change of basis must preserve the chain of vector

subspaces. Hence, two such representations are equivalent if there exists an invertible block upper

triangular as × as matrix, with blocks of size a1 × a1, a2 × (a2 − a1), . . ., as−1 × (as − as−1), and

n × (n − as). Again there is a normal form for such matrices, with an a1 × a1 identity matrix in

rows indexed by α1, . . . , αa1 (with zeros to the right of this matrix), and an (ai − ai−1) × (ai −

ai−1) identity matrix in rows indexed by αai−1+1, . . . , αai (with zeros to the right of this matrix),

for all i = 2, . . . , s. The remaining coordinates are the affine charts for Fl(a1, . . . , as;n), with

transition functions just like the Grassmannian, but with invertible block upper triangular matrices

as described above.

For each α ∈ D(a1, . . . , as;n), let βi ∈
(
[n]
ai

)
be given by βi = Sort(α1, . . . , αai) for all i =

1, . . . , s, where here “Sort" means order least to greatest. Given such an α ∈ D(a1, . . . , as;n) and

complete flagF• ∈ Fl(n), we obtain a Schubert variety ΩαF• = {(Ha1 , . . . , Has) ∈ Fl(a1, . . . , as;n) |

Hai ∈ ΩβiF• ∈ Gr(ai, n) for all i = 1, . . . , s} ⊆ Fl(a1, . . . , as;n). We continue to have the

Bruhat order on D(a1, . . . , as;n), and so the corresponding Schubert cells of Fl(a1, . . . , as;n)

with respect to α ∈ D(a1, . . . , as;n) and F• ∈ Fl(n) are Ω◦
αF• = ΩαF• \

⋃
γ ̸≤αΩγF•.

With all of these notions generalized, we again get Schubert problems as the 0-dimensional

intersections of Schubert varieties, and corresponding Galois groups as for Grassmannians. En-

riched Galois groups for Schubert problems in partial flag varieties are known, but little has been

done to understand them in general. We give experimental data in Chapter 4 for all such Galois

groups where n = 6 and the number of solutions is less than or equal to 250.

2.6 Schubert Problems in Types B, C, and D

So far we have considered Grassmannians, and more generally partial flag varieties, which

are chains of arbitrary subspaces of a vector space of specified dimensions. However, if our vec-

tor space has additional structure, in this case a non-degenerate bilinear form, we will want our
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subspaces to respect this additional structure.

Definition 2.6.1. Let V be a finite-dimensional vector space over a field F . A non-degenerate

bilinear form is a 2-multilinear form ⟨·, ·⟩ : V × V → F such that ⟨x, y⟩ = 0 for all y ∈ V =⇒

x = 0⃗ ∈ V . A non-degenerate bilinear form is symmetric if ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ V , and it

is skew-symmetric if ⟨x, y⟩ = −⟨y, x⟩ for all x, y ∈ V .

In coordinates, after fixing an ordered basis {b1, . . . , bn} of V , a non-degenerate bilinear form

on V is represented by an invertible matrix M , such that for all x, y ∈ V (expressed as column

vectors in the usual fashion), ⟨x, y⟩ = xTMy (where xT is the transpose of x, so a row vector). The

matrix M is found by Mij = ⟨ei, ej⟩. Expressed this way, a symmetric non-degenerate bilinear

form is one represented by a symmetric matrix MT = M , and a skew-symmetric non-degenerate

bilinear form is one represented by a skew-symmetric matrix MT = −M . Inner products are spe-

cial cases of non-degenerate symmetric bilinear forms over real or complex vector spaces, where

the form is further required to be positive-definite, i.e. ⟨x, x⟩ ≥ 0 for all x ∈ V , with equality

achieved if and only if x = 0⃗ ∈ V . Once we have such a non-degenerate bilinear form (symmetric

or skew-symmetric), we can define analogues of partial flag varieties and their Schubert problems.

Definition 2.6.2. Let V be an n-dimensional vector space over a field F , with symmetric or skew-

symmetric non-degenerate bilinear form ⟨·, ·⟩. Then, for a subspace W ⊆ V , we define its anni-

hilator to be W⊥ = {v ∈ V | ⟨v, w⟩ = 0 for all w ∈ W}. A subspace W ⊆ V is isotropic (with

respect to ⟨·, ·⟩) if W ⊆ W⊥. In other words, W ⊆ V is isotropic if the bilinear form restricted

to W ⟨·, ·⟩|W : W ×W → F is identically the zero-map: ⟨w1, w2⟩ = 0 for all w1, w2 ∈ W . A

partial flag Fa1 ⊆ · · · ⊆ Fas ∈ Fl(a1, . . . , as;n) is also said to be isotropic (with respect to ⟨·, ·⟩)

if Fas ⊆ F n is isotropic. We classify the corresponding sets of isotropic flags as follows (where for

Types B, C, and D, we require 2as < n):

• Type A partial flag varieties FlA(a1, . . . , as;n): The usual partial flag variety

Fl(a1, . . . , as;n) that we studied in the previous section.
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• Type B partial flag varieties FlB(a1, . . . , as;n): the set of isotropic flags of shape

(a1, . . . , as;n) with respect to a symmetric bilinear form ⟨·, ·⟩, and where n is odd.

• Type C partial flag varieties FlC(a1, . . . , as;n): the set of isotropic flags of shape

(a1, . . . , as;n) with respect to a skew-symmetric bilinear form ⟨·, ·⟩. Skew-symmetric bilin-

ear forms only can be defined for even-dimensional vector spaces, and so n is even.

• Type D partial flag varieties FlD(a1, . . . , as;n): the set of isotropic flags of shape

(a1, . . . , as;n) with respect to a symmetric bilinear form ⟨·, ·⟩, and where n is even.

For Type C, since n = 2k is even, we call a maximal isotropic subspace W ⊆ V a Lagrangian

subspace. It turns out that an isotropic subspaceW ⊆ V is Lagrangian if and only if dim(W ) = k

(half of the dimension of V ). We thus define the Lagrangian Grassmannian to be LG(k) =

FlC(k; 2k).

These partial flag varieties of types B, C, and D also have analogues of Schubert varieties,

but this time indexed by signed permutations instead of traditional permutations. If dim(V ) = 2k

or 2k + 1, a signed permutation σ is like a permutation in Sk, written in one-line notation, but

where each i ∈ [k] can have a bar over it or not. For example, 213 and 132 are signed permutations

when k = 3, but 112 is not. Hence, there are 2k · k! such signed permutations. For types B and

C, we index using signed permutations with no other restrictions, but for type D we index via

signed permutations with an even number of bars over the i ∈ [k] in the one-line notation for the

permutations.

Signed permutations can be viewed as traditional partial permutations in S2k or S2k+1 by re-

placing i with k + i for each i ∈ [k] with a bar on top. Thus, completing this partial permutation,

we can also view signed permutations as special types of full permutations. In this way, we obtain

affine local coordinate charts, Schubert cells, and Schubert varieties with the same definition as

for type A partial flag varieties (descent restrictions and all), just requiring our subspaces to be

isotropic with respect to the corresponding symmetric or skew-symmetric bilinear form, and for

the full flags F• used to be isotropic to this form as well.
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Having such a Schubert cell decomposition (paving by affines), again the classes of the Schu-

bert varieties (closures of Schubert cells) give a basis for the Chow ring of FlS(a1, . . . , as;n)

(where S ∈ {A,B,C,D}). Intersections of Schubert varieties can always be shown to be trans-

verse, and so multiplication in this ring corresponds to these intersections of Schubert varieties,

governing all intersections of subvarieties in the partial flag varieties. We discuss how to work

computationally with these Chow groups in the first section of Chapter 3. Intersections that are

0-dimensional again give Schubert problems, the solutions being the number of points in the inter-

section. These Schubert problems in types B, C, and D all have corresponding Galois groups as

well (in the same way as for type A), and these groups can be shown to be enriched or not. The

classification (and even computation) of such Schubert Galois groups is in the very early stages,

and is currently an open problem. In Chapter 3, we present a software package that will find the

number of solutions to Schubert problems in partial flag varieties of types A, B, C, and D. In

Chapter 4, we use this package to investigate enriched Galois groups for such problems in types A

and C.
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3. THE MACAULAY2 PACKAGE SCHUBERTIDEALS.M2

3.1 Cohomology Computations

In the previous chapter, we introduced Grassmannians and the partial flag varieties of types A,

B, C, andD. In each case, given a complete flag F•, we gain a partition of the variety into Schubert

cells, called its Schubert decomposition. The closures of these cells are called Schubert varieties,

and a 0-dimensional intersection of some Schubert varieties (each with respect to a different flag)

constitutes a Schubert problem. Additionally, the rational equivalence classes of the Schubert

varieties form a basis for the Chow ring of the variety, which encapsulates all intersection-theoretic

information of the variety.

But how does one actually solve a Schubert problem (finding the number of points of inter-

section of Schubert varieties)? One way to do this is to first focus on the complete flag vari-

eties FlS(n), where S ∈ {A,B,C,D}. For any partial flag variety FlS(a1, . . . , as;n), we con-

sider the projection π : FlS(n) → FlS(a1, . . . , as;n) by forgetting some of the flags. Given

any Schubert variety ΩαF• ⊆ FlS(a1, . . . , as;n), indexed by a partial (possibly signed) permu-

tation α and with respect to a specific complete flag F•, note that its fiber under the projection

π−1({ΩαF•}) = Ωα̃F• ⊆ FlS(n) is a Schubert variety in the complete flag variety, where α̃ is α

completed to a full (possibly signed) permutation. While by construction the codimensions of the

varieties ΩαF• and Ωα̃F• are the same, the dimensions are not, since they live in different spaces.

However, there is a distinguished Schubert variety Ωa1,...,as ⊆ FlS(n) such that a dense open subset

of Ωa1,...,as is isomorphic to a dense open subset of FlS(a1, . . . , as;n), and so a dense open subset

of the original Schubert variety ΩαF• can be viewed as the intersection of dense open subsets of

Ωa1,...,as and Ωα̃F• ∈ FlS(n). This construction works for intersections as well, and so in other

words we can consider any Schubert problem Ωα1F 1
• ∩ · · · ∩ ΩαrF r

• ⊆ FlS(a1, . . . , as;n) as the

Schubert problem in the complete flag variety Ωa1,...,as ∩Ωα̃1F 1
• ∩· · ·∩Ωα̃rF r

• ⊆ FlS(n), at least in

local coordinates. Hence, for the rest of this section, we only consider the complete flag varieties
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FlS(n), since all Schubert problems in partial flag varieties can be interpreted in this setting.

Recall that the ith elementary symmetric polynomial ei ∈ Z[x1, . . . , xn] is ei(x1, . . . , xn) =∑
1≤k1≤···≤ki≤n xk1 · · ·xki . Then, the Chow rings of the complete flag varieties are each isomorphic

to the quotient of a polynomial ring by an ideal involving elementary symmetric polynomials:

• A(FlA(n)) ∼= Z[x1, . . . , xn]/(e1(x1, . . . , xn), . . . , en(x1, . . . , xn))

• A(FlB(n)) ∼= Z[x1, . . . , xn]/((e1(x21, . . . , x2n), . . . , en(x21, . . . , x2n))

• A(FlC(n)) ∼= Z[x1, . . . , xn]/(e1(x21, . . . , x2n), . . . , en(x21, . . . , x2n))

• A(FlD(n)) ∼= Z[x1, . . . , xn]/(e1(x21, . . . , x2n), . . . , en−1(x
2
1, . . . , x

2
n), en(x1, . . . , xn))

The images of the Schubert classes in A(FlS(n)) form an integer basis for the corresponding

polynomial quotient ring, and there are polynomials in Z[x1, . . . , xn], called Schubert polynomi-

als of Type S, whose images in the quotient ring represent the images of the Schubert classes.

These Schubert polynomials will be indexed by (possibly signed) permutations as were the Schu-

bert varieties, and the degree of a Schubert polynomial corresponds to the codimension of the

corresponding Schubert variety. In particular, the above isomorphisms are of graded rings, so the

top graded part of the Chow ring being 1-dimensional implies that the top graded part of the poly-

nomial quotient ring is also 1-dimensional. This top part has the class of a single Schubert poly-

nomial as its basis element, corresponding to the unique top codimension (dimension of FlS(n))

Schubert variety (the class of a point). Since multiplication of Schubert varieties in the Chow ring

corresponds to their intersection, the same is true of the multiplication of the corresponding Schu-

bert polynomials. Hence, for a Schubert problem in FlS(n), one can solve the problem (number

of points of intersection) by multiplying the corresponding Schubert polynomials together. Since

the degrees will add to be the top codimension (since the intersection is 0-dimensional), after quo-

tienting out by the ideal the product will simply be a positive integer multiplied by the unique

Schubert polynomial corresponding to the class of a point, the integer being the desired solution to

the Schubert problem.
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In practice, polynomial multiplication in a quotient ring is best done using a computer alge-

bra system, like Macaulay2. We have developed a software package, called SchubertIdeals.m2, in

Macaulay2, which is dedicated to studying Schubert problems in partial flag varieties. The first

routines from our package grant a user the ability to generate Schubert polynomials, and mul-

tiply them together in the relevant quotient ring to solve Schubert problems. We first describe

how to construct Schubert polynomials, and give examples along the way. We do this first for

Fl(n) = FlA(n), where Schubert polynomials will be indexed by usual permutations in Sn, and

then adapt for the other types indexed by signed permutations. For the remainder of this section,

for readability we write ω ∈ Sn in an adapted one-line notation with brackets as [ω1, . . . , ωn] rather

than ω(1) · · ·ω(n).

For i = 1, . . . , n − 1, let σi = [1, . . . , i + 1, i, . . . , n] be the simple transposition which

swaps entry i and entry i + 1 when multiplying on the right (or left) of any permutation: If

ω = [ω1, . . . , ωn] ∈ Sn, ωσi = [ω1, . . . , ωi+1, ωi, . . . , ωn]. Then, it is well known that the set

of simple transpositions {σi | i = 1, . . . , n} generates Sn, and satisfy

σ2
i = 1, if |i− j| > 1, then σiσj = σjσi, and σiσi+1σi = σi+1σiσi+1

. Recall that a permutation ω ∈ Sn has an inversion (i, j) if i < j but ωi > ωj , and that the length

of the permutation ℓ(ω) is the number of inversions in ω. If ω ∈ Sn can be written as a product

of simple transpositions, ω = σa1 · · ·σal , where l = ℓ(ω), we say that the sequence a1, . . . , al is

a reduced word for ω. Reduced words for a permutation are not unique, but they all have the

same length. The permutation with the longest length is ω0 = [n, n − 1, . . . , 1], and has length

ℓ(ω0) =
(
n
2

)
, which is the dimension of Fl(n). The corresponding Schubert variety (and later

Schubert polynomial) will have codimension (degree)
(
n
2

)
, representing the class of a point (our

unique top degree basis element discussed earlier). On the other hand, the identity permutation

e = [1, 2, . . . , n] has length ℓ(e) = 0, and so corresponds to all of Fl(n).

We define an action of Sn on Z[x1, . . . , xn] as follows: for ω = [ω1, . . . , ωn] ∈ Sn and f ∈
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Z[x1, . . . , xn], ωf(x1, . . . , xn) = f(xω1 , . . . , xωn). From this action, for each i = 1, . . . , n− 1, we

define the divided difference operator ∂i : Z[x1, . . . , xn] → Z[x1, . . . , xn] by ∂if(x1, . . . , xn) =

f(x1,...,xn)−σif(x1,...,xn)
xi−xi+1

, where again σi is the ith simple transposition. Since σi(f−σi(f)) = −(f−

σi(f)), it is divisible by xi − xi+1, and so ∂i(f) is a polynomial of degree 1 less than the degree

of f . As an example, ∂2(x21x2) =
x21x2−x21x3
x2−x3 = x21. Furthermore, ∂2i = 0, if |i − j| > 1 then

∂i∂j = ∂j∂i, and ∂i∂i+1∂i = ∂i+1∂i∂i+1 (similar to the properties observed for the σi). Using these

properties, it can be shown that independent of choice of reduced word for ω = σa1 · · ·σal , that

∂ω = ∂a1 · · · ∂al is well-defined.

Definition 3.1.1. For each ω ∈ Sn, the Schubert polynomial indexed by ω is given by Sω =

∂ω−1ω0
(xn−1

1 xn−2
2 · · ·xn−1), where ∂ω−1ω0

= ∂a1 · · · ∂al for any reduced word a1, . . . , al for ω−1ω0 ∈

Sn, and where ω0 = [n, n− 1, . . . , 1] is the longest length element of Sn.

For some examples, note that

• Sω0 = xn−1
n xn−2

n−1 · · ·x1 (the staircase monomial, which is our unique top degree Schubert

polynomial representing the class of a point)

• Sσi = x1 + · · ·+ xi

• Se = 1 (representing all of Fl(n))

We now share our Macaulay2 code for working with the Chow ring

A(FlA(n)) ∼= Z[x1, . . . , xn]/(e1(x1, . . . , xn), . . . , en(x1, . . . , xn))

and its basis of Schubert polynomials, along with sample output from tests showing how the code

works in practice. In the Macaulay2 code, “- -” at the beginning of a line indicates a comment

about the functionality of the forthcoming function. Each function in the package is called a

“method" in Macaulay2, and the input types are given (like “List", or "ZZ" for Z, etc). In the

examples after each function, values like i132 correspond to user input, and o132 correspond to
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Macaulay2’s output. Semicolons are placed occasionally at the end of input to suppress long output

for readability.

-- Completes a partial permutation into a full one.

completePermutation = method(TypicalValue=>List)

completePermutation(List,ZZ):=(w,n) ->(

wcomplete := w;

for i from 1 to n do(

if isSubset({i},wcomplete)==false then wcomplete=append(wcomplete,i));

return(wcomplete))

-- EXAMPLE of completePermutation:

i132 : completePermutation({7,8,4,1,2,3},9)

o132 = {7, 8, 4, 1, 2, 3, 5, 6, 9}

o132 : List

-- Gives the length of a partial permutation.

typeALength = method()

typeALength(List,ZZ) := (w,n) -> (

wcomp := completePermutation(w,n);

count := 0;

for i from 1 to n do

for j from i+1 to n do

if wcomp_(i-1) > wcomp_(j-1) then count = count+1;

return(count))

-- EXAMPLE of typeALength:

i133 : typeALength({7,8,4,1,2,3},9)

o133 = 15

-- Computes a reduced word for a permutation.

bubbleSort = method()

bubbleSort(List) := (L) -> (

n := length(L);

sorted := reverse(sort(L));

swaps := {};

while (L != sorted) do(

for i from 0 to (n-2) do(

if L_(i) < L_(i+1) then(

87



swaps = prepend(i,swaps);

L = switch(i,i+1,L);

break)));

return(swaps))

-- EXAMPLES of bubbleSort:

i134 : bubbleSort({1,2,3,4})

o134 = {0, 1, 2, 0, 1, 0}

o134 : List

i135 : bubbleSort({4,3,2,1})

o135 = {}

o135 : List

-- Applies a divided difference operator to a polynomial.

deltaSwapA = method()

deltaSwapA(Thing,Ring,ZZ) := (f,R,k) -> (

ringvars := gens R;

fnew := sub((f-sub(f,{ringvars_(k)=>ringvars_(k+1),ringvars_(k+1)=>ringvars_(k)}))/

(ringvars_(k)-ringvars_(k+1)),R);

return(fnew))

-- EXAMPLES of deltaSwapA:

i136 : R = QQ[a,b,c,d]

o136 = R

o136 : PolynomialRing

i137 : f = a^3*b^2*c

3 2

o137 = a b c

o137 : R
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i138 : deltaSwapA(f,R,0)

2 2

o138 = a b c

o138 : R

i139 : deltaSwapA(f,R,1)

3

o139 = a b*c

o139 : R

i140 : deltaSwapA(f,R,2)

3 2

o140 = a b

o140 : R

-- Computes the Schubert polynomial given a reduced word for a permutation.

polyRepA = method();

polyRepA(List,Ring) := (w,R) -> (

ringvars := gens R;

n := length(ringvars);

pointclass := 1;

for i from 1 to (n-1) do(

pointclass = pointclass*(ringvars_(i-1))^(n-i));

polyrep := pointclass;

for i in w do(

polyrep = deltaSwapA(polyrep,R,i));

return(polyrep))

-- EXAMPLES of polyRepA:

i141 : polyRepA(bubbleSort({1,4,3,2}),QQ[a,b,c,d])

2 2 2 2

o141 = a b + a*b + a c + a*b*c + b c
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o141 : QQ[a..d]

i142 : for perm in permutations({1,2,3,4}) do(

print(perm);

print(polyRepA(bubbleSort(perm),QQ[a,b,c,d])))

{1, 2, 3, 4}

1

{1, 2, 4, 3}

a + b + c

{1, 3, 2, 4}

a + b

{1, 3, 4, 2}

a*b + a*c + b*c

{1, 4, 2, 3}

2 2

a + a*b + b

{1, 4, 3, 2}

2 2 2 2

a b + a*b + a c + a*b*c + b c

{2, 1, 3, 4}

a

{2, 1, 4, 3}

2

a + a*b + a*c

{2, 3, 1, 4}

a*b

{2, 3, 4, 1}

a*b*c

{2, 4, 1, 3}

2 2

a b + a*b

{2, 4, 3, 1}

2 2

a b*c + a*b c

{3, 1, 2, 4}

2

a

{3, 1, 4, 2}

2 2

a b + a c
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{3, 2, 1, 4}

2

a b

{3, 2, 4, 1}

2

a b*c

{3, 4, 1, 2}

2 2

a b

{3, 4, 2, 1}

2 2

a b c

{4, 1, 2, 3}

3

a

{4, 1, 3, 2}

3 3

a b + a c

{4, 2, 1, 3}

3

a b

{4, 2, 3, 1}

3

a b*c

{4, 3, 1, 2}

3 2

a b

{4, 3, 2, 1}

3 2

a b c

-- Computes a polynomial ring in n variables and the ideal inside generated by the elementary

-- symmetric polynomials in that many variables.

elementarySymmetricIdeal = method()

elementarySymmetricIdeal(ZZ) := (n) -> (

R := QQ[y_(1)..y_(n)][t];

f :=1_R;

for i from 1 to n do(

f = f*(y_(i)+t));

coeffs := (coefficients (f-t^n))_(1);

S := QQ[y_(1)..y_(n)];
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I := sub(ideal(coeffs),S);

return(S,I))

-- EXAMPLES of elementarySymmetricIdeal:

i143 : elementarySymmetricIdeal(3)

o143 = (QQ[y ..y ], ideal (y + y + y , y y + y y + y y , y y y ))

1 3 1 2 3 1 2 1 3 2 3 1 2 3

o143 : Sequence

i144 : (S,I) = elementarySymmetricIdeal(4);

o144 : Sequence

-- Computes the intersection number of a Schubert problem using cohomology in the full Type A flag

-- manifold.

intA = method()

intA(List,Ring,Ideal) := (alphas,S,I) -> (

n := numgens S;

f := 1_S;

for alpha in alphas do(

f = f*polyRepA(bubbleSort(alpha),S));

f = f % I;

g := polyRepA(bubbleSort(reverse(toList(1..n))),S) % I;

numsols := f / g;

return(numsols))

-- EXAMPLES of intA:

i145 : intA({{2,1,3,4},{3,4,2,1}},S,I)

o145 = 1

o145 : frac S

i146 : intA({{2,1,3,4},{4,3,1,2}},S,I)

o146 = 0
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o146 : frac S

i147 : intA({{2,1,3,4},{1,3,2,4},{1,3,2,4},{1,3,2,4},{1,3,2,4},{1,2,4,3}},S,I)

o147 = 2

o147 : frac S

-- Computes the intersection number of a Schubert problem using cohomology in a general Type A

-- partial flag manifold.

partialIntA = method()

partialIntA(List,List,Ring,Ideal) := (flagshape,alphas,S,I) -> (

l := length(flagshape);

n := flagshape_(-1);

newalphas := {};

for alpha in alphas do(

newalpha := completePermutation(alpha,n);

newalphas = append(newalphas,newalpha));

dualclass := {};

for k from 1 to (l-1) do(

for j from (flagshape_(-(k+1)) + 1) to flagshape_(-k) do(

dualclass = prepend(j,dualclass)));

for i from 1 to flagshape_(0) do(

dualclass = prepend(i,dualclass));

newalphas = append(newalphas,dualclass);

numsols := intA(newalphas,S,I);

return(numsols))

-- EXAMPLES of partialIntA:

i148 : (S,I) = elementarySymmetricIdeal(5);

o148 : Sequence

i149 : partialIntA({1,2,5},{{2,1},{2,1},{1,3},{1,3},{1,3},{1,3},{1,3}},S,I)

o149 = 5

o149 : frac S

i150 : partialIntA({1,2,5},{{2,1},{2,1},{2,1},{1,3},{1,3},{1,3},{1,3}},S,I)
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o150 = 3

o150 : frac S

i151 : (S,I) = elementarySymmetricIdeal(6);

o151 : Sequence

i152 : partialIntA({2,4,6},{{1,4,2,5},{1,4,2,5},{1,4,2,5},{1,4,2,5}},S,I)

o152 = 6

o152 : frac S

To obtain the analogues of Schubert polynomials for types B, C, and D, we need general defi-

nitions of root systems and Weyl groups for the classical groups of those types. For the following

discussion, let V be a vector space over Q with a positive definite symmetric bilinear form (α, β).

Each vector α ∈ V determines a reflection σα found by fixing the hyperplane perpendicular to α

and sending α to −α.

Definition 3.1.2. A root system is a subset R ⊆ V such that

1. R is finite and 0 /∈ R

2. If α ∈ R, then σα leaves R invariant

3. If α, β ∈ R, then (α, β) ∈ Z

The root systems of types A, B, C, and D (described shortly) will additionally all be reduced

(α ∈ R =⇒ −α is the only scalar multiple of α in R) and irreducible (cannot be expressed as the

union of two proper root systems). Hence, we will assume all root systems discussed from now on

to have these additional properties.

Definition 3.1.3. The Weyl group W associated to a root system R is the group generated by

{σα | α ∈ R}.

94



Let {e1, . . . , en} be the standard basis for Qn. Then, Sn is generated by the reflections σi =

σei+1−ei , which swaps ei and ei+1 (corresponding to our simple transpositions earlier). Thus, the

Weyl group corresponding to the root system R = An−1 is Sn. In general, like vector spaces, root

systems have bases, but the definition differs slightly than for that of a vector space.

Definition 3.1.4. A basis of a root system R is a subset B ⊆ R such that

1. B is linearly independent

2. For each α ∈ R, there exists a collection {aβ ∈ Z | β ∈ B}, with all aβ ≥ 0 or with all

aβ ≤ 0, such that α =
∑

β∈B aββ

Proposition 3.1.5. If B is a basis for a root system R, and if W is the Weyl group associated to R,

then {σβ | β ∈ B} generates W , and is a minimal generating set for W .

Reduced and irreducible root systems can be completely classified into one of nine types:

four infinite families An, Bn, Cn, and Dn (for any n ∈ Z>0, and five exceptional root systems

E6, E7, E8, F4, G2. We only consider the four infinite families here, but all we discuss can also be

obtained for the exceptional groups. Here are the bases for the root systems that we will consider

(subscripts corresponding to the number of basis elements):

• An−1 : B = {ei+1 − ei | i = 1, . . . , n− 1}

• Bn : B = {e1} ∪ {ei+1 − ei | i = 1, . . . , n− 1}

• Cn : B = {2e1} ∪ {ei+1 − ei | i = 1, . . . , n− 1}

• Dn : B = {e1 + e2} ∪ {ei+1 − ei | i = 1, . . . , n− 1}

From Proposition 3.1.5, we can then compute generators for the corresponding Weyl groups of

each type (which will be our indexing sets for the Schubert varieties/polynomials in our full flag

manifolds). For example, the linear transformation taking ei+1 − ei to its negative and fixing all

other basis elements is the simple transposition σi, again showing that WAn−1 = Sn.

95



Each of the other types of root systems Bn, Cn, and Dn contain the basis for An−1, and so the

simple transpositions {σi | i = 1, . . . , n − 1} are generators for their Weyl groups as well, but in

each case there is one additional generator. For Bn, e1 is also a basis element, and the linear trans-

formation taking e1 to −e1 can be viewed as a new operation on a permutation ω by sending ω1 to

−ω1. We call this new transformation σ0, so that ωσ0 = [ω1, ω2, . . . , ωn]σ0 = [−ω1, ω2, . . . , ωn].

The Weyl group WBn is then the group generated by σ0, σ1, . . . , σn−1, also called the hyperocta-

hedral group on n letters, or the group of signed permutations. One can represent WBn as the

group of permutation matrices, but where the 1’s can be +1 or −1 (so |WBn| = 2n · n!). Another

way to represent WBn is like the bracketed one-line notation we’ve been using this section for Sn,

but where there can be bars over elements (thought of as a negative sign, so applying the bar twice

cancels the operation). Like for Sn, we now want to define a notion of length for elements of WBn ,

and we do so for all general Weyl groups.

Definition 3.1.6. Let B = {β1, . . . , βn} be an ordered basis for a root system R, and let W

be the corresponding Weyl group. Hence, W is generated by {σβ1 , . . . , σβn}. If ω ∈ W , then

ω = σβi1 · · ·σβil , and if l is the minimal number of generators required to write ω, then we say

l = ℓ(ω) is the (Coxeter) length of ω, and that σβi1 , . . . , σβil is a reduced word for ω.

The longest length element of WBn is ω0 = [1, . . . , n], which has length n2 (the dimension of

FlB(n)). For Cn, everything carries over as for Bn, since the new basis element is 2e1, which also

gets sent to its negative via σ0. Therefore, WCn = WBn .

For Dn, we have the reflection sending e1 + e2 to −e1 − e2 that sends e1 to −e2 and e2 to −e1

(since this fixes the perpendicular hyperplane). Let σ1 act on Sn by ωσ1 = [ω1, ω2, ω3, . . . , ωn]σ1 =

[ω2, ω1, ω3, . . . , ωn]. Since σ1 = σ0σ1σ0, WDn ⊆ WBn is the subgroup of signed permutations with

a number of −1’s equivalent to n mod 2. The longest length element of WDn is then the signed

permutation ω0 = [±1, 2, . . . , n], where +1 or −1 is chosen to give an even number of sign changes

depending on whether n is odd or even. Either way, its length is n2−n (the dimension of FlD(n)).

To summarize:

• WAn−1 = (σi | i = 1, . . . , n− 1)
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• WBn = (σ0) ∪ (σi | i = 1, . . . , n− 1)

• WCn = (σ0) ∪ (σi | i = 1, . . . , n− 1)

• WDn = (σ1) ∪ (σi | i = 1, . . . , n− 1)

Just like permutations, Weyl group generators act on polynomials f ∈ Z[x1, . . . , xn]. Our new

generators for types B, C, and D act as

σ0f(x1, x2 . . . , xn) = f(−x1, x2, . . . , xn), and σ1f(x1, x2, x3, . . . , xn) = f(−x2,−x1, x3, . . . , xn)

. Additionally, we associate to every root α ∈ R the equation of its perpendicular hyperplane γ(α),

where in general γ(α) is obtained from α by replacing ei with xi. For example, γ(ei+1 − ei) =

xi+1 − xi for all i = 1, . . . , n− 1.

Definition 3.1.7. Let R be a root system with basis B. For each root α ∈ B, define the divided

difference operator ∂α : Z[x1, . . . , xn] → Z[x1, . . . , xn] by ∂αf = f−σαf
−γ(α) .

Proposition 3.1.8. f − σαf is divisible by γ(α), and so ∂αf really is a polynomial.

Proof. Every point in the hyperplane perpendicular to α is fixed by σα. Therefore, f − σαf is 0

whenever γ(α) = 0. From commutative algebra, this implies that the ideal generated by f − σαf

is contained in the ideal generated by γ(α). Hence, f − σαf = gγ(α) for some polynomial g.

For the various types (classified by their corresponding root systems), we have the following

divided difference operators:

• A,B,C,D: ∂if = f−σif
xi−xi+1

(i = 1, . . . , n− 1)

• B : ∂B0 f = f−σ0f
−x1

• C : ∂C0 f = f−σ0f
−2x1

• D : ∂1f =
f−σ1f
−x1−x2
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We then obtain Schubert polynomials for types B, C, andD as we did for type A, but using the

analogous longest length element ω0 and notion of reduced word (with the new generators). We

give our Macaulay2 code for these types, starting with Type C, but since this is similar to that for

Type A, we omit comments and examples.

completeSignedPermutation = method()

completeSignedPermutation(List,ZZ) := (w,n) -> (

wnew := w;

for i from 1 to n do(

if (isSubset({i},wnew)==false and isSubset({-i},wnew)==false) then wnew=append(wnew,i));

return(wnew))

typeCLength = method()

typeCLength(List) := (w) -> (

n := length(w);

count := 0;

for i from 1 to n do

for j from i+1 to n do

if w_(i-1) > w_(j-1) then count = count+1;

for i from 1 to n do

for j from i to n do

if w_(i-1) + w_(j-1) > 2*n+1 then count = count+1;

return(count))

signedToNot = method()

signedToNot(List) := (perm) -> (

n := length(perm);

wnew := {};

for i from 1 to n do(

if perm_(i-1) > 0 then wnew = append(wnew,perm_(i-1));

if perm_(i-1) < 0 then wnew = append(wnew,2*n+1+perm_(i-1)));

return wnew)

signedBubbleSort = method()

signedBubbleSort(List) := (L) -> (

n := length(L);

eventual := {};

for i from 1 to n do(

eventual = append(eventual,2*n+1-i));

swaps := {};
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while (L != eventual) do(

if L == reverse(sort(L)) then(

smallest := L_(-1);

L = drop(L,-1);

L = append(L,2*n+1-smallest);

swaps = prepend(n-1,swaps));

for i from 0 to (n-2) do(

if L_(i) < L_(i+1) then(

swaps = prepend(i,swaps);

L = switch(i,i+1,L);

break)));

return(swaps))

deltaSwapC = method()

deltaSwapC(Thing,Ring) := (f,R) -> (

ringVars := gens R;

return sub((f-sub(f,{ringVars_(-1)=>(-1)*ringVars_(-1)}))/(2*ringVars_(-1)),R))

elementarySchurDeterminantC = method()

elementarySchurDeterminantC(List,ZZ) := (lambda,n) -> (

Rt := QQ[y_(1)..y_(n)][t];

f := 1_(Rt);

for i from 1 to n do(

f = f*(y_(i)+t));

elempolys := ((coefficients (f-t^n))_(1))_(0);

S := QQ[y_(1)..y_(n)];

fixedElemPolys := {};

for i from 1 to n do fixedElemPolys = append(fixedElemPolys,sub(elempolys_(i-1),S));

M := mutableMatrix(S,n,n);

for i from 1 to n do(

for j from 1 to n do(

if (lambda_(i-1)+j-i) == 0 then M_(i-1,j-1) = 1;

if ((lambda_(i-1)+j-i) > 0 and (lambda_(i-1)+j-i) <= n) then M_(i-1,j-1) =

fixedElemPolys_(lambda_(i-1)+j-i-1)));

return determinant(matrix M))

polyRepC = method()

polyRepC(List,Ring) := (w,R) -> (

ringVars := gens R;

n := length(ringVars);

pointclass := 1;
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for i from 1 to (n-1) do(

pointclass = pointclass*(ringVars_(i-1))^(n-i));

lambda := {};

for i from 1 to n do(

lambda = prepend(i,lambda));

delta := sub(elementarySchurDeterminantC(lambda,n),R);

polyrep := pointclass*delta;

for i in w do(

if (i != n-1) then(

polyrep = deltaSwapA(polyrep,R,i));

if (i == n-1) then(

polyrep = deltaSwapC(polyrep,R)));

return(polyrep))

elementarySymmetricSquaresIdeal = method()

elementarySymmetricSquaresIdeal(ZZ) := (n) -> (

R := QQ[y_(1)..y_(n)][t];

f := 1_R;

for i from 1 to n do(

f = f*(y_(i)^2+t));

coeffs := (coefficients (f-t^n))_(1);

S := QQ[y_(1)..y_(n)];

I := sub(ideal(coeffs),S);

return(S,I,S/I))

intC = method()

intC(List,Ring,Ideal) := (alphas,S,I) -> (

f := 1_S;

for alpha in alphas do(

f = f*polyRepC(signedBubbleSort(signedToNot(alpha)),S));

f = f % I;

return (((coefficients f)_(1))_(0))_(0))

partialIntC = method()

partialIntC(List,List,Ring,Ideal) := (flagType,alphas,S,I) -> (

l := length(flagType);

n := flagType_(-1);

newAlphas := {};

for alpha in alphas do(

newAlpha := completeSignedPermutation(alpha,n);

newAlphas = append(newAlphas,newAlpha));
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dualClass := {};

for k from 2 to (l-1) do(

for j from (flagType_(-(k+1)) + 1) to flagType_(-k) do(

dualClass = prepend(j,dualClass)));

for i from 1 to flagType_(0) do(

dualClass = prepend(i,dualClass));

for i from 1 to (n-flagType_(-2)) do(

dualClass = append(dualClass,-i));

newAlphas = append(newAlphas,dualClass);

return(intC(newAlphas,S,I)))

--------------------------------------------------

-- TYPE B CODE

--------------------------------------------------

typeBLength = method()

typeBLength(List) := (w) -> (

n := length(w);

count := 0;

for i from 1 to n do

for j from i+1 to n do

if w_(i-1) > w_(j-1) then count = count+1;

for i from 1 to n do

for j from i to n do

if w_(i-1) + w_(j-1) > 2*n+2 then count = count+1;

return(count))

deltaSwapB = method()

deltaSwapB(Thing,Ring) := (f,R) -> (

ringVars := gens R;

return sub((f-sub(f,{ringVars_(-1)=>(-1)*ringVars_(-1)}))/(ringVars_(-1)),R))

elementarySchurDeterminantB = method()

elementarySchurDeterminantB(List,ZZ) := (lambda,n) -> (

Rt := QQ[y_(1)..y_(n)][t];

f := 1_(Rt);

for i from 1 to n do(

f = f*(y_(i)+t));

elempolys := ((coefficients (f-t^n))_(1))_(0);
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S := QQ[y_(1)..y_(n)];

fixedElemPolys := {};

for i from 1 to n do fixedElemPolys = append(fixedElemPolys,(1/2)*(sub(elempolys_(i-1),S)));

M := mutableMatrix(S,n,n);

for i from 1 to n do(

for j from 1 to n do(

if (lambda_(i-1)+j-i) == 0 then M_(i-1,j-1) = 1;

if ((lambda_(i-1)+j-i) > 0 and (lambda_(i-1)+j-i) <= n) then M_(i-1,j-1) =

fixedElemPolys_(lambda_(i-1)+j-i-1)));

return determinant(matrix M))

polyRepB = method()

polyRepB(List,Ring) := (w,R) -> (

ringVars := gens R;

n := length(ringVars);

pointclass := 1;

for i from 1 to (n-1) do(

pointclass = pointclass*(ringVars_(i-1))^(n-i));

lambda := {};

for i from 1 to n do(

lambda = prepend(i,lambda));

delta := sub(elementarySchurDeterminantB(lambda,n),R);

polyrep := pointclass*delta;

for i in w do(

if (i != n-1) then(

polyrep = deltaSwapA(polyrep,R,i));

if (i == n-1) then(

polyrep = deltaSwapB(polyrep,R)));

return(polyrep))

intB = method()

intB(List,Ring,Ideal) := (alphas,S,I) -> (

f := 1_S;

for alpha in alphas do(

f = f*polyRepB(signedBubbleSort(signedToNot(alpha)),S));

f = f % I;

return (((coefficients f)_(1))_(0))_(0))

partialIntB = method()

partialIntB(List,List,Ring,Ideal) := (flagType,alphas,S,I) -> (

l := length(flagType);
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n := flagType_(-1);

newAlphas := {};

for alpha in alphas do(

newAlpha := completeSignedPermutation(alpha,n);

newAlphas = append(newAlphas,newAlpha));

dualClass := {};

for k from 2 to (l-1) do(

for j from (flagType_(-(k+1)) + 1) to flagType_(-k) do(

dualClass = prepend(j,dualClass)));

for i from 1 to flagType_(0) do(

dualClass = prepend(i,dualClass));

for i from 1 to (n-flagType_(-2)) do(

dualClass = append(dualClass,-i));

newAlphas = append(newAlphas,dualClass);

return(intB(newAlphas,S,I)))

--------------------------------------------------

-- TYPE D CODE

--------------------------------------------------

typeDLength = method()

typeDLength(List) := (w) -> (

n := length(w);

count := 0;

for i from 1 to n do

for j from i+1 to n do

if w_(i-1) > w_(j-1) then count = count+1;

for i from 1 to n do

for j from i+1 to n do

if w_(i-1) + w_(j-1) > 2*n+1 then count = count+1;

return(count))

signedBubbleSortD = method()

signedBubbleSortD(List) := (L) -> (

n := length(L);

eventual := {};

for i from 1 to (n-1) do(

eventual = append(eventual,2*n+1-i));

if (n % 2 == 0) then eventual = append(eventual,n+1);
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if (n % 2 != 0) then eventual = append(eventual,n);

swaps := {};

while (L != eventual) do(

if L == reverse(sort(L)) then(

smallest := L_(-1);

nextSmallest := L_(-2);

L = drop(L,-1);

L = drop(L,-1);

L = append(L,2*n+1-smallest);

L = append(L,2*n+1-nextSmallest);

swaps = prepend(n-1,swaps));

for i from 0 to (n-2) do(

if L_(i) < L_(i+1) then(

swaps = prepend(i,swaps);

L = switch(i,i+1,L);

break)));

return(swaps))

deltaSwapD = method()

deltaSwapD(Thing,Ring) := (f,R) -> (

ringVars := gens R;

return sub((f-sub(f,{ringVars_(-2)=>(-1)*ringVars_(-1),ringVars_(-1)=>(-1)*ringVars_(-2)}))/

(ringVars_(-2)+ringVars_(-1)),R))

elementarySchurDeterminantD = method()

elementarySchurDeterminantD(List,ZZ) := (lambda,n) -> (

Rt := QQ[y_(1)..y_(n)][t];

f := 1_(Rt);

for i from 1 to n do(

f = f*(y_(i)+t));

elempolys := ((coefficients (f-t^n))_(1))_(0);

S := QQ[y_(1)..y_(n)];

fixedElemPolys := {};

for i from 1 to n do fixedElemPolys = append(fixedElemPolys,(1/2)*(sub(elempolys_(i-1),S)));

M := mutableMatrix(S,n-1,n-1);

for i from 1 to (n-1) do(

for j from 1 to (n-1) do(

if (lambda_(i-1)+j-i) == 0 then M_(i-1,j-1) = 1;

if ((lambda_(i-1)+j-i) > 0 and (lambda_(i-1)+j-i) <= n) then M_(i-1,j-1) =

fixedElemPolys_(lambda_(i-1)+j-i-1)));

return determinant(matrix M))
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polyRepD = method()

polyRepD(List,Ring) := (w,R) -> (

ringVars := gens R;

n := length(ringVars);

pointclass := 1;

for i from 1 to (n-1) do(

pointclass = pointclass*(ringVars_(i-1))^(n-i));

lambda := {};

for i from 1 to (n-1) do(

lambda = prepend(i,lambda));

delta := sub(elementarySchurDeterminantD(lambda,n),R);

polyrep := pointclass*delta;

for i in w do(

if (i != n-1) then(

polyrep = deltaSwapA(polyrep,R,i));

if (i == n-1) then(

polyrep = deltaSwapD(polyrep,R)));

return(polyrep))

elementarySymmetricDIdeal = method()

elementarySymmetricDIdeal(ZZ) := (n) -> (

Rt := QQ[y_(1)..y_(n)][t];

f := 1_(Rt);

squareProd := 1_(Rt);

prod := 1_(Rt);

for i from 1 to n do(

f = f*(y_(i)^2+t);

squareProd = squareProd*((y_(i))^2);

prod = prod*(y_(i)));

coeffs := (coefficients (f-t^n-squareProd))_(1);

S := QQ[y_(1)..y_(n)];

I := sub(ideal(coeffs,prod),S);

return(S,I,S/I))

intD = method()

intD(List,Ring,Ideal) := (alphas,S,I) -> (

f := 1_S;

for alpha in alphas do(

f = f*polyRepD(signedBubbleSortD(signedToNot(alpha)),S));

f = f % I;
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return (((coefficients f)_(1))_(0))_(0))

partialIntD = method()

partialIntD(List,List,Ring,Ideal) := (flagType,alphas,S,I) -> (

l := length(flagType);

n := flagType_(-1);

newAlphas := {};

for alpha in alphas do(

newAlpha := completeSignedPermutation(alpha,n);

newAlphas = append(newAlphas,newAlpha));

dualClass := {};

for k from 2 to (l-1) do(

for j from (flagType_(-(k+1)) + 1) to flagType_(-k) do(

dualClass = prepend(j,dualClass)));

for i from 1 to flagType_(0) do(

dualClass = prepend(i,dualClass));

for i from 1 to (n-flagType_(-2)-1) do(

dualClass = append(dualClass,-i));

if (n-flagType_(-2) % 2 == 0) then dualClass = append(dualClass,n-flagType_(-2));

if (n-flagType_(-2) % 2 != 0) then dualClass = append(dualClass,flagType_(-2)-n);

newAlphas = append(newAlphas,dualClass);

return(intC(newAlphas,S,I)))

3.2 An Aside: Partial Flag Varieties Abstractly as Lie Groups

Before continuing our discussion of the functionality of our Macualay2 package, Schuber-

tIdeals.m2, and its usefulness in solving Schubert problems, we take an aside to give another

coordinate-free definition of the complete flag varieties and their Schubert varieties in types A, B,

C, and D. To do this, we need the notion of a Lie group.

Definition 3.2.1. Let N be an n-dimensional smooth manifold, and let M be an N -dimensional

smooth manifold. A map F : N → M is smooth if for every p ∈ N , there is a local coordinate

chart φ : U → Rn on N with p ∈ U and a local coordinate chart ψ : V → Rm on M with

F (p) ∈ V such that F (U) ⊆ V , and the map ψ ◦ F ◦ φ : φ(U) ⊆ R⋉ → ψ(V ) ⊆ Rm is

smooth (the partial derivatives of all orders of each of its coordinate functions exist). A Lie group

G is a set that is simultaneously a smooth manifold and group, such that the binary operation
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∗ : G×G→ G and inversion map (taking an element g ∈ G to g−1) µ : G→ G are smooth maps.

Note here the product of two manifolds M × N is a manifold with local coordinate charts being

products of the local coordinate charts on M with those of N .

To each of the four types of root systems considered in the previous section, we assign a

classical Lie group:

• An−1 : SL(n,C)

• Bn : SO(2n+ 1,C)

• Cn : Sp(2n,C)

• Dn : SO(2n,C)

Here, SL(n,C) is the special linear group, consisting of invertible matrices with determinant

1, and the other groups are the special orthogonal group SO(k,C) (k = 2n or k = 2n + 1) and

the symplectic group Sp(k,C) (k = 2n), which are subgroups of SL(k,C) that preserve some

non-degenerate bilinear form ⟨·, ·⟩ on Ck. For SO(k,C), the form is symmetric, and for Sp(k,C),

the form is skew-symmetric. In other words, if we let Rk be the reverse k × k identity matrix with

1’s along the anti-diagonal and 0’s elsewhere, and if we let J =

 0 Rn

−Rn 0

, then SO(k,C) is

the subset of matrices P in SL(k,C) with P TRkP = Rk, and Sp(k,C) is the subset of matrices P

in SL(k,C) with P TJP = J .

Let R, W , and G be the fixed root system, Weyl group, and Lie group associated to one of the

four classical types S ∈ {An−1, Bn, Cn, Dn} listed above, everything indexed by n. Further, let

B ⊆ G in each case be the Borel subgroup consisting of upper triangular matrices in G. Then

abstractly, the complete flag variety is the quotient FlS(n) = G/B, which is a smooth complex

projective variety. The classical Lie groups have a Bruhat decomposition into double cosets,

G = ⊔ω∈WBωB, from which we can define the Schubert cells in G/B to be Ω◦
ω = BωB

B
, and

the corresponding Schubert subvarieties to be the closures of Schubert cells Ωω = Ω◦
ω (in the
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Zariski topology). Here, there the complete flag F• is omitted from the notation since the flag is

considered to be the span of the columns of the identity matrix - the identity flag. Additionally, we

have that Ωω =
⋃
ν≤ω Ω

◦
ν , where ν ≤ ω is in the strong Bruhat order, meaning that if a1, . . . , al

is a reduced word for ω, then there exists a subsequence b1, . . . , bq such that σb1 · · · σbq = ν.

As for the partial flags FlS(a1, . . . , as;n), there is a related abstract construction. Using the

same notation as before, an intermediate group B ⊆ PJ ⊆ G is called a parabolic subgroup.

Furthermore, in the theory of Lie (or algebraic) groups, G has a maximal torus T ⊆ B, where

a torus is an abelian, connected, and compact subgroup of G, so T is maximal (under inclusion)

with respect to these properties. We then define WJ = {ω ∈ W | ωT ⊆ PJ} and W J =

{maximal (Coxeter) length coset representatives u of cosets in W/WJ} (which we’ve been using

partial permutations to represent), which allow us to obtain another Bruhat decomposition of G

into double cosets: G = ⊔u∈WJBuPJ . As a result we get the abstract definition of partial flag

varieties FlS(a1, . . . , as;n) = G/PJ (J related to the shape (a1, . . . , as;n)), as well as Schubert

cells Ω◦
u =

BuPJ

PJ
and Schubert varieties Ωu = Ωu.

If X is any partial flag variety of any type, then its cohomology ring H∗(X) is the same as

its Chow ring. Therefore, each subvariety V of X determines an element [V ] ∈ H∗(X). In

particular, each Schubert subvariety corresponds to a cohomology class [Ω◦
ω]. The cup product in

H∗(X) corresponds to the intersection of subvarieties ofX (as long as they are in general position,

so the intersection is transverse). The decomposition of X into Schubert cells Ω◦
ω, which are of

even real dimension and whose boundaries are unions of smaller Schubert cells, implies that the

cohomology ring H∗(X,Z) is concentrated in even dimensions (hence commutative), and induces

a corresponding Z-basis for H∗(X,Z) of Schubert classes Cω.

While these abstract definitions are good to keep in mind, and we presented them here for

completeness, we will be more interested in computation and therefore how to represent such

objects in local coordinates.
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3.3 Partial Flag Varieties, Flags, and Schubert Varieties in Coordinates

We now describe how to represent the various parts of a Schubert problem in coordinates,

and share our code from SchubertIdeals.m2 with slight explanations of the methods, as well as

examples. We only give coordinates for Type A and Type C, but this can be extended to Types

B and D as well. Recall that for a Grassmannian Gr(k, n), we represent Gr(k, n) in coordinates

by the Schubert variety Ω{1,2,...,k}O•, where O• is the opposite flag with subspaces the spans of

the columns of Jn (notation introduced last section), and where α = {1, . . . , k} ∈
(
[n]
k

)
is the

identity partial permutation (still the identity permutation when completed). In this representation,

Gr(k, n) is represented by its affine chart U1,...,k, which is the n×k matrix

 Ik

(xij)

, with xij being

the (n−k)×k matrix of k(n−k) local coordinates for Gr(k, n). Similarly, the partial flag variety

Fl(a1, . . . , as;n) is also the Schubert variety indexed by the identity partial permutation [1, . . . , as],

Ωa1,...,asO•, which is represented in coordinates by an n× as matrix with identity matrices Iai−ai−1

(i = 1, . . . , as, with a0 = 0) in rows 1, . . . , a1, a1 + 1, . . . , a2, . . ., as−1 + 1, . . . , as, respectively.

In particular, the Schubert variety representing all of the complete flag variety Fl(n) is given in

local coordinates (with respect to the opposite flag) as a lower triangular matrix (with last column

omitted), with 1’s along the diagonal. Importantly, we use the codimension convention when using

partial permutations to index Schubert varieties. Some other sources prefer to use the dimension

convention, and so we also have functionality that can convert between the two. Here are some

examples, using our package’s Macaulay2 method typeAStiefelCoords:

-- Converts a partial permutation in dimension notation to the corresponding

one in codimension notation. (Equivalently, gives the dual class).

dimToCodim = method()

dimToCodim(List,List) := (flagshape,alpha) -> (

s := length(flagshape) - 1;

n := flagshape_(-1);

breaks := prepend(0,flagshape);

alphadual := {};

for b from 1 to s do(

k := breaks_(b) - breaks_(b-1);

for i from 1 to k do(
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alphadual = append(alphadual,n+1-alpha_(breaks_(b-1)+k-i))));

return(alphadual))

-- EXAMPLES of dimToCodim:

i168 : dimToCodim({2,4},{3,4})

o168 = {1, 2}

o168 : List

i169 : dimToCodim({2,4},{1,4})

o169 = {1, 4}

o169 : List

i170 : dimToCodim({3,17,21},{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17})

o170 = {19, 20, 21, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

o170 : List

-- A helper function for typeAStiefelCoords

splitPermutation = method()

splitPermutation(List,List) := (flagshape,alpha) -> (

gaps := {flagshape_(0)};

for i from 1 to (length(flagshape)-2) do(

gaps = append(gaps,flagshape_(i)-flagshape_(i-1)));

splitperm := {};

copyalpha := alpha;

for gap in gaps do(

subalpha := {};

for i from 0 to (gap-1) do(

subalpha = append(subalpha,copyalpha_(0));

copyalpha = delete(copyalpha_(0),copyalpha));

splitperm = append(splitperm,subalpha));

return(splitperm))

-- EXAMPLE of splitPermutation:
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i159 : splitPermutation({2,3,6,9},{7,8,4,1,2,3})

o159 = {{7, 8}, {4}, {1, 2, 3}}

o159 : List

-- Gives the Stiefel Coordinates for a Type A Schubert Variety

typeAStiefelCoords = method()

typeAStiefelCoords(List,List,Ring) := (flagshape,alpha,K) -> (

n := flagshape_(-1);

as := flagshape_(-2);

S := K[x_(1,1)..x_(n,as)];

alphalist := splitPermutation(flagshape,alpha);

firstalpha := alphalist_(0);

l := length(firstalpha);

-- Define matrix of correct size (and over the correct ring) that we can manipulate for the first

subalpha

M := mutableMatrix(S,n,l);

-- Set leading ones in lxl identity submatrix with rows indexed by alpha

for i from 1 to l do M_(firstalpha_(i-1)-1,i-1) = 1;

-- Set variables below the leading 1’s

for j from 1 to l do

for i from firstalpha_(j-1)+1 to n do M_(i-1,j-1) = x_(i,j);

-- Set to 0 all entries above and to the left of leading 1’s

for i from 1 to l do

for j from 1 to i-1 do M_(firstalpha_(i-1)-1,j-1) = 0;

-- Make matrix non-mutable

M = matrix M;

-- Remove firstalpha from alphalist

alphalist = delete(firstalpha,alphalist);

-- Now repeat and concatenate the matrices

indexshift := length(firstalpha);

for subalpha in alphalist do(

l = length(subalpha);

N := mutableMatrix(S,n,l);

for i from 1 to l do N_(subalpha_(i-1)-1,i-1) = 1;

for j from 1 to l do

for i from subalpha_(j-1)+1 to n do N_(i-1,j-1) = x_(i,j+indexshift);

for i from 1 to l do

for j from 1 to i-1 do N_(subalpha_(i-1)-1,j-1) = 0;

N = matrix N;
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M = M | N;

indexshift = indexshift + l);

M = mutableMatrix M;

for i from 1 to as do(

for j from i to as-1 do(

M_(alpha_(i-1)-1,j) = 0));

M = matrix M;

-- Create a new ring with variables only those that show up in the matrix M

R := K[support M];

-- Make it so that M is a matrix over the new ring

M = sub(M,R);

-- Return Stiefel coordinates and new ring

return({M, R}))

EXAMPLES of typeAStiefelCoords:

i155 : typeAStiefelCoords({1,2,3,4,5},{4,5,1,2},QQ)

o155 = {| 0 0 1 0 |, QQ[x , x ..x , x ]}

| 0 0 x_(2,3) 1 | 2,3 3,3 3,4 5,1

| 0 0 x_(3,3) x_(3,4) |

| 1 0 0 0 |

| x_(5,1) 1 0 0 |

o155 : List

i156 : typeAStiefelCoords({2,4},{1,2},QQ)

o156 = {| 1 0 |, QQ[x ..x ]}

| 0 1 | 3,1 4,2

| x_(3,1) x_(3,2) |

| x_(4,1) x_(4,2) |

o156 : List

i157 : typeAStiefelCoords({2,4,6},{1,2,3,4},QQ)

o157 = {| 1 0 0 0 |, QQ[x ..x , x ..x ]}

| 0 1 0 0 | 3,1 4,2 5,1 6,4

| x_(3,1) x_(3,2) 1 0 |

| x_(4,1) x_(4,2) 0 1 |
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| x_(5,1) x_(5,2) x_(5,3) x_(5,4) |

| x_(6,1) x_(6,2) x_(6,3) x_(6,4) |

o157 : List

i158 : typeAStiefelCoords({1,2,3,4,5,6},{1,2,3,4,5},QQ)

o158 = {| 1 0 0 0 0 |, (ring omitted to fit on page)

| x_(2,1) 1 0 0 0 |

| x_(3,1) x_(3,2) 1 0 0 |

| x_(4,1) x_(4,2) x_(4,3) 1 0 |

| x_(5,1) x_(5,2) x_(5,3) x_(5,4) 1 |

| x_(6,1) x_(6,2) x_(6,3) x_(6,4) x_(6,5) |

o158 : List

i159 : splitPermutation({2,3,6,9},{7,8,4,1,2,3})

o159 = {{7, 8}, {4}, {1, 2, 3}}

o159 : List

i160 : typeAStiefelCoords({1,4},{1},QQ)

o160 = {| 1 |, QQ[x , x , x ]}

| x_(2,1) | 2,1 3,1 4,1

| x_(3,1) |

| x_(4,1) |

o160 : List

i161 : typeAStiefelCoords({2,4},{1,2},QQ)

o161 = {| 1 0 |, QQ[x ..x ]}

| 0 1 | 3,1 4,2

| x_(3,1) x_(3,2) |

| x_(4,1) x_(4,2) |

o161 : List

i162 : typeAStiefelCoords({1,2,4},{1,2},QQ)
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o162 = {| 1 0 |, QQ[x , x ..x ]}

| x_(2,1) 1 | 2,1 3,1 4,2

| x_(3,1) x_(3,2) |

| x_(4,1) x_(4,2) |

o162 : List

i163 : typeAStiefelCoords({3,4},{1,2,3},QQ)

o163 = {| 1 0 0 |, QQ[x ..x ]}

| 0 1 0 | 4,1 4,3

| 0 0 1 |

| x_(4,1) x_(4,2) x_(4,3) |

o163 : List

i164 : typeAStiefelCoords({1,3,4},{1,2,3},QQ)

o164 = {| 1 0 0 |, QQ[x , x , x ..x ]}

| x_(2,1) 1 0 | 2,1 3,1 4,1 4,3

| x_(3,1) 0 1 |

| x_(4,1) x_(4,2) x_(4,3) |

o164 : List

i165 : typeAStiefelCoords({2,3,4},{1,2,3},QQ)

o165 = {| 1 0 0 |, QQ[x ..x , x ..x ]}

| 0 1 0 | 3,1 3,2 4,1 4,3

| x_(3,1) x_(3,2) 1 |

| x_(4,1) x_(4,2) x_(4,3) |

o165 : List

i166 : typeAStiefelCoords({1,2,3,4},{1,2,3},QQ)

o166 = {| 1 0 0 |, QQ[x , x ..x , x ..x ]}

| x_(2,1) 1 0 | 2,1 3,1 3,2 4,1 4,3

| x_(3,1) x_(3,2) 1 |

| x_(4,1) x_(4,2) x_(4,3) |
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o166 : List

i167 : typeAStiefelCoords({4,4},{1,2,3,4},QQ)

o167 = {| 1 0 0 0 |, QQ[]}

| 0 1 0 0 |

| 0 0 1 0 |

| 0 0 0 1 |

o167 : List

Similarly, we have functionality for computing the partial flag varieties of Type C, as well as

the corresponding Schubert varieties. We give our code here without examples.

typeCStiefelCoords = method()

typeCStiefelCoords(List,List,Ring) := (flagshape,alpha,K) -> (

n := flagshape_(-1);

as := flagshape_(-2);

S := K[x_(1,1)..x_(n,as)];

alphalist := splitPermutation(flagshape,alpha);

firstalpha := alphalist_(0);

l := length(firstalpha);

-- Define matrix of correct size (and over the correct ring) that we can manipulate for the first

subalpha

M := mutableMatrix(S,n,l);

-- Set leading ones in lxl identity submatrix with rows indexed by alpha

for i from 1 to l do M_(firstalpha_(i-1)-1,i-1) = 1;

-- Set variables below the leading 1’s

for j from 1 to l do

for i from firstalpha_(j-1)+1 to n do M_(i-1,j-1) = x_(i,j);

-- Set to 0 all entries above and to the left of leading 1’s

for i from 1 to l do

for j from 1 to i-1 do M_(firstalpha_(i-1)-1,j-1) = 0;

-- Make matrix non-mutable

M = matrix M;

-- Remove firstalpha from alphalist

alphalist = delete(firstalpha,alphalist);

-- Now repeat and concatenate the matrices

indexshift := length(firstalpha);
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for subalpha in alphalist do(

l = length(subalpha);

N := mutableMatrix(S,n,l);

for i from 1 to l do N_(subalpha_(i-1)-1,i-1) = 1;

for j from 1 to l do

for i from subalpha_(j-1)+1 to n do N_(i-1,j-1) = x_(i,j+indexshift);

for i from 1 to l do

for j from 1 to i-1 do N_(subalpha_(i-1)-1,j-1) = 0;

N = matrix N;

M = M | N;

indexshift = indexshift + l);

M = mutableMatrix M;

for i from 1 to as do(

for j from i to as-1 do(

M_(alpha_(i-1)-1,j) = 0));

M = matrix M;

-- Create a new ring with variables only those that show up in the matrix M

R := K[support M];

-- Make it so that M is a matrix over the new ring

M = sub(M,R);

-- Create the symplectic form J

J := mutableMatrix(R,n,n);

halfn := sub(n/2,ZZ);

for i from 1 to halfn do J_(n-i,i-1) = 1;

for j from halfn+1 to n do J_(n-j,j-1) = -1;

J = matrix J;

-- Create ideal of symplectic relations

rels := ideal(0_R);

for i from 1 to as do

for j from i to as do rels = rels + (transpose(submatrix(M,{i-1}))*J*submatrix(M,

{j-1}))_(0,0);

-- Return Stiefel coordinates and new ring, along with the ideal of relations among the variables

and the dimension of that ideal

{M, R, rels, dim(rels)})

3.4 Computing Ideals of Schubert Problems

Once one has coordinates for Schubert varieties, one can solve and study Schubert problems.

While in the first section of this chapter, we solved Schubert problems using the Chow ring and

Schubert polynomials, this only gave the number of solutions to a Schubert problem. However,
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what if one wanted the actual solutions to an instance of the Schubert problem (meaning flags have

been specified)? In other words, what if one wanted the ideal (in local coordinates) of the polyno-

mial equations whose solutions are the solutions to the Schubert problem? Having such an ideal is

advantageous, as one can use the ideal to recover the number of solutions (computing the degree

of the ideal, as long as the ideal is 0-dimensional), and more than that! With the ideal in hand,

one can study the arithmetic and reality of solutions, as well as the Galois group corresponding to

the Schubert problem (the symmetries of the polynomial system). The SchubertIdeals.m2 package

is specifically designed to compute such ideals, which we will now explain. Furthermore, we use

these ideals to study Galois groups, which is explained in detail in Chapter 4.

We first illustrate our use of efficient equations for the ideal of a Schubert problem in local

coordinates for Derksen’s problem (which we will again revisit when considering Galois groups):

Fixing four general flags F 1
• , F

2
• , F

3
• , F

4
• ∈ Fl(n), how many H ∈ Gr(4, 8) satisfy dim(H ∩F i

4) ≥

2 for all i = 1, . . . , 4. In other words, how many 4-planes intersect four general 4-planes in C8?

Since H ∈ Ω1256F
i
• ⇐⇒ dim(H ∩ F i

4) ≥ 2 for all i = 1, . . . , 4, this problem can be restated as

finding the number of points in the intersection of Schubert varieties Ω1256F
1
• ∩Ω1256F

2
• ∩Ω1256F

3
• ∩

Ω1256F
4
• .

A naive way of finding the system of equations defining the ideal of this intersection is for each

i = 1, . . . , 4, to form an augmented 8× 8 matrix
[
H | F i

4

]
, where H is an 8× 4 rank-4 matrix of

indeterminates, and each F i
4 is a fixed 8× 4 rank-4 matrix of constants. Then, dim(H ∩F i

4) ≥ 2 is

equivalent to the rank of
[
H | F i

4

]
being less than or equal to 6, which means that the 7 × 7 non-

maximal minors of
[
H | F i

4

]
(the determinant of the matrix after deleting 1 row and 1 column)

all vanish simultaneously. Since there are 64 such minors (8 choices for each deleted row, and

independently 8 choices for each deleted column), this gives 32 homogeneous cubic equations and

32 homogeneous quartic equations for the ideal of each Ω1256F
i
• (so 64 · 4 = 256 total equations

for the ideal of the intersection). However, it turns out that the ideal for each Ω1256F
i
• is generated

by only 16 cubic minors, but it is not clear a priori which 16 suffice. We present a much more

efficient formulation of this problem, which involves only 17 quartic equations for each of the
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Ω1256F
i
• (so 17 · 4 = 68 total for the intersection). This is the minimal number of such equations.

Furthermore, in our formulation we use local coordinates rather than homogeneous coordinates

for Gr(4, 8) and its Schubert varieties, so since dim(Ω1256F
i
•) = 12, our efficient formulation uses

only 12 indeterminates (the minimal possible number). Here in local coordinates, we have that the

matrix representation of Ω1256O• is 

1 0 0 0

0 1 0 0

x31 x32 0 0

x41 x42 0 0

0 0 1 0

0 0 0 1

x71 x72 x73 x74

x81 x82 x83 x84



.

Recall that the Plücker embedding Gr(k, n) → P(
n
k)−1(F ) takes each H ∈ Gr(k, n) to its

vector of k × k minors (pα(H) | α ∈
(
[n]
k

)
), called the Plücker coordinates of H . Here, pα(H) is

the determinant of the k×k submatrix with rows indexed by α. In particular, each Schubert variety

ΩαO• is cut out from Gr(k, n) by a subset of Plücker coordinates. Specifically, H ∈ ΩαO• ⇐⇒

pβ(H) = 0 for all β ∈
(
[n]
k

)
with β ≱ α, because given a general matrix H ∈ ΩαO•, the rank of

the k×k submatrix with rows β1, . . . , βk is k unless βi > αi for some i. This again uses the Bruhat

order on
(
[n]
k

)
, where β ≥ α ⇐⇒ βi ≥ αi for all i = 1, . . . , k. Returning to Derksen’s problem

in Gr(4, 8), there are precisely 17 indicies β ∈
(
[8]
4

)
with β ≱ 1256.

Now, H ∈ ΩαF• ⇐⇒ F−1H ∈ ΩαO• ⇐⇒ pβ(H) = 0 for all β ≱ α. Using the

Cauchy-Binet formula, we can write pβ(F−1H) =
∑

γ∈([n]
k )
pβ,γ(F

−1)pγ(H), where pβ,γ(F−1) =

det((F−1)βi,γj)
k
i,j=1 is the (β, γ)-th entry in the matrix ∧k(F−1). From this discussion, we get the

Theorem used for efficient equations for the ideal of a Schubert problem:

Theorem 3.4.1. Let Y be Stiefel (local) coordinates for Y ⊆ Gr(k, n), and compute the Plücker

vector P (Y) = (pβ(Y) | β ∈
(
[n]
k

)
) for Y . Compute the rectangular matrix P (α)(F−1) =
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(pβ,γ(F
−1) | β ≱ α, γ ∈

(
[n]
k

)
). Then, the entries in the matrix-vector product P (α)(F−1) · P (Y)

cut out Y ∩ ΩαF•.

In our implementation, given a Schubert problem with Schubert conditions α1, . . . , αr ∈
(
[n]
k

)
and flags F 2

• , . . . , F
r
• (we will always have F 1

• = O•), we choose Y to be the local coordinates

of Y = Ωα1O•, and get the equations of Ωα1O• ∩ Ωα2F 2
• ∩ · · · ∩ ΩαrF r

• by adjoining the sets of

equations defining each Y ∩ΩαiF i
• for each i = 2, . . . , r, using the Theorem above, and obtaining

the ideal generated by all such equations. To compare with the naive algorithm, the original re-

ported implementation of this method computed the ideal for the 6 solutions to Derksen’s problem

Ω1256F
1
• ∩Ω1256F

2
• ∩Ω1256F

3
• ∩Ω1256F

4
• in 20 seconds, compared to 20 minutes the naive way. In

contrast, using the typeASchubertIdeal method in our package SchubertIdeals.m2, the computation

takes 0.23767 seconds.

As for generalizing the above method for Grassmannians to Schubert problems in partial

flag varieties Fl(a1, . . . , as;n) ⊆ Gr(a1, n) × · · · × Gr(as, n), we consider the projections π :

Fl(a1, . . . , as;n) → Gr(ai, n) for each i = 1, . . . , n, which give Schubert problems in each

Grassmannian Gr(ai, n) by sorting the partial permutation with possible descents α in positions 1

through ai to get another α ∈
(
[n]
ai

)
. Doing this for each relevant Schubert variety in the Schubert

problem, and for each projection to a Grassmannian, we simply adjoin all the equations obtained

to form one large ideal giving the equations in the partial flag variety.

We give the code and many examples now, suppressing many of the flags and ideals for larger

examples due to their size:

-- Returns whether a partial permutation is not greater than or equal to another in the Bruhat

order.

notGreaterThan = method(TypicalValue=>Boolean)

notGreaterThan(List,List) := (beta,alpha) -> (

notgreaterthan := false;

for i from 1 to length(beta) do

if beta_(i-1) < alpha_(i-1) then notgreaterthan = true;

return(notgreaterthan))

-- EXAMPLES of notGreaterThan:
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i246 : notGreaterThan({1,2},{3,4})

o246 = true

i247 : notGreaterThan({3,4},{1,2})

o247 = false

i248 : notGreaterThan({1,4},{2,3})

o248 = true

i249 : notGreaterThan({1,2},{1,2})

o249 = fals

-- Gives all partial permutations not greater than or equal to a fixed one.

allNotGreaterThan = method()

allNotGreaterThan(List,ZZ) := (alpha, n) -> (

L := {};

for beta in subsets(splice {1..n},length(alpha)) do

if notGreaterThan(beta,alpha) then L = append(L,beta);

return(L))

-- EXAMPLES of allNoteGreatherThan:

i250 : allNotGreaterThan({1,2},4)

o250 = {}

o250 : List

i251 : allNotGreaterThan({1,3},4)

o251 = {{1, 2}}

o251 : List

i252 : allNotGreaterThan({1,4},4)
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o252 = {{1, 2}, {1, 3}, {2, 3}}

o252 : List

i253 : allNotGreaterThan({2,3},4)

o253 = {{1, 2}, {1, 3}, {1, 4}}

o253 : List

i254 : allNotGreaterThan({2,4},4)

o254 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}}

o254 : List

i255 : allNotGreaterThan({3,4},4)

o255 = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}}

o255 : List

-- Computes the P(alpha)(F^{-1}) matrix that is essential in finding a minimal number of

generators for the ideal of a Schubert problem.

cauchyBinetCoefficients = method()

cauchyBinetCoefficients(List,List,Matrix,Ring) := (grassmannianshape,betas,F,K) -> (

k := grassmannianshape_(0);

n := grassmannianshape_(1);

Finv := inverse F;

M := mutableMatrix(K,length(betas),binomial(n,k));

subs := subsets(splice {1..n},k);

kones := splice{k:1};

for i from 0 to length(betas)-1 do(

for j from 0 to binomial(n,k)-1 do(

M_(i,j) = det(submatrix(Finv,betas_(i)-kones,subs_(j)-kones))));

M = matrix M;

return(M))

-- EXAMPLE of cauchyBinetCoefficients:

i256 : cauchyBinetCoefficients({2,4},allNotGreaterThan({2,4},4),id_(QQ^4),QQ)
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o256 = | 1 0 0 0 0 0 |

| 0 1 0 0 0 0 |

| 0 0 1 0 0 0 |

| 0 0 0 1 0 0 |

4 6

o256 : Matrix QQ <--- QQ

-- Computes the ideal for a Type A Schubert problem.

typeASchubertIdeal = method()

----- NOTE: There should be m alphas and m-1 flags (first flag will be assumed to be the

reverse identity and not given as input)

----- NOTE: The flags should be general and the alpha’s codimensions should add up to k(n-k) to

give an actual Schubert problem

typeASchubertIdeal(List,List,List,Ring) := (flagshape,alphas,flags,K) -> (

n := last(flagshape);

q := length(flags);

subspaces := delete(n,flagshape);

bigcoords := (typeAStiefelCoords(flagshape,alphas_(0),K))_(0);

bigring := (typeAStiefelCoords(flagshape,alphas_(0),K))_(1);

eqns := ideal(0_bigring);

for a in subspaces do(

coords := submatrix(bigcoords,{0..(a-1)});

PY := exteriorPower(a,coords);

conds := {sort(take(alphas_(0),a))};

for i from 1 to q do(

conds = append(conds,sort(take(alphas_(i),a))));

for i from 1 to length(conds)-1 do(

eqns = eqns +

sub(ideal(cauchyBinetCoefficients({a,n},allNotGreaterThan(conds_(i),n),flags_(i-1

),K)*PY),bigring)));

return(eqns))

-- EXAMPLES of typeASchubertIdeal:

i257 : F1 = random(QQ^4,QQ^4)

o257 = | 3 1/4 5/4 1/5 |

| 1/3 1/5 2 8 |

| 3 3/5 1/8 7 |
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| 8/7 1/4 1/2 2/3 |

4 4

o257 : Matrix QQ <--- QQ

i258 : F2 = random(QQ^4,QQ^4)

o258 = | 2/7 8/9 1/2 1/3 |

| 4/7 2/5 3/5 1/7 |

| 1/10 7/2 5/4 10/9 |

| 7/3 1/6 7/9 7/8 |

4 4

o258 : Matrix QQ <--- QQ

i259 : F3 = random(QQ^4,QQ^4)

o259 = | 10/7 1 1/3 2 |

| 3/4 2 2/3 1/5 |

| 3/2 5/3 3 1/7 |

| 5/2 2 1/4 1 |

4 4

o259 : Matrix QQ <--- QQ

i260 : I = typeASchubertIdeal({2,4},{{3,4},{1,2}},{F1},QQ)

o260 = ideal 0

o260 : Ideal of QQ[]

i261 : (dim I, degree I)

o261 = (0, 1)

o261 : Sequence

i262 : I = typeASchubertIdeal({2,4},{{1,2},{3,4}},{F1},QQ);

o262 : Ideal of QQ[x ..x ]

3,1 4,2
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i263 : (dim I, degree I)

o263 = (0, 1)

o263 : Sequence

i264 : I = typeASchubertIdeal({2,4},{{1,3},{1,3},{1,3},{1,3}},{F1,F2,F3},QQ);

o264 : Ideal of QQ[x , x ..x ]

2,1 4,1 4,2

i265 : (dim I, degree I)

o265 = (0, 2)

o265 : Sequence

i266 : I = typeASchubertIdeal({2,4},{{1,3},{1,3}},{F1},QQ)

439740 36960 483840 655200 134400

o266 = ideal (0, - ------x x + ------x - ------x + ------x + ------)

436537 2,1 4,2 436537 2,1 436537 4,1 436537 4,2 436537

o266 : Ideal of QQ[x , x ..x ]

2,1 4,1 4,2

i267 : (dim I, degree I)

o267 = (2, 2)

o267 : Sequence

i268 : I = typeASchubertIdeal({2,4},{{1,4},{2,3}},{F1},QQ);

o268 : Ideal of QQ[x , x ]

2,1 3,1

i269 : (dim I, degree I)

o269 = (-1, 0)
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o269 : Sequence

i270 :

F1 = random(QQ^5,QQ^5);

5 5

o270 : Matrix QQ <--- QQ

i271 : F2 = random(QQ^5,QQ^5);

5 5

o271 : Matrix QQ <--- QQ

i272 : F3 = random(QQ^5,QQ^5);

5 5

o272 : Matrix QQ <--- QQ

i273 : F4 = random(QQ^5,QQ^5);

5 5

o273 : Matrix QQ <--- QQ

i274 : F5 = random(QQ^5,QQ^5);

5 5

o274 : Matrix QQ <--- QQ

i275 : F6 = random(QQ^5,QQ^5);

5 5

o275 : Matrix QQ <--- QQ

i276 :

I = typeASchubertIdeal({1,2,5},{{2,1},{2,1},{1,3},{1,3},{1,3},{1,3},{1,3}},

{F1,F2,F3,F4,F5,F6},QQ);

o276 : Ideal of QQ[x ..x ]

3,1 5,2

125



i277 : (dim I, degree I)

o277 = (0, 5)

o277 : Sequence

i278 : I = typeASchubertIdeal({1,2,5},{{2,1},{2,1},{2,1},{1,3},{1,3},{1,3},{1,3}},

{F1,F2,F3,F4,F5,F6},QQ);

o278 : Ideal of QQ[x ..x ]

3,1 5,2

i279 : (dim I, degree I)

o279 = (0, 3)

o279 : Sequence

i280 :

F1 = random(QQ^6,QQ^6);

6 6

o280 : Matrix QQ <--- QQ

i281 : F2 = random(QQ^6,QQ^6);

6 6

o281 : Matrix QQ <--- QQ

i282 : F3 = random(QQ^6,QQ^6);

6 6

o282 : Matrix QQ <--- QQ

i283 : I = typeASchubertIdeal({2,4,6},{{1,4,2,5},{1,4,2,5},{1,4,2,5},{1,4,2,5}},{F1,F2,F3},QQ);

o283 : Ideal of QQ[x , x , x , x ..x , x ..x ]

2,1 3,1 3,3 5,1 5,2 6,1 6,4

i284 : (dim I, degree I)
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o284 = (0, 6)

o284 : Sequence

i285 :

F = random(QQ^4,QQ^4)

o285 = | 2/3 1/2 7/5 5/3 |

| 3/2 7/3 5/2 3/5 |

| 1 2/3 1/3 5/3 |

| 1/4 7/6 1/5 2 |

4 4

o285 : Matrix QQ <--- QQ

i286 : I = typeASchubertIdeal({1,4},{{1},{4}},{F},QQ);

o286 : Ideal of QQ[x , x , x ]

2,1 3,1 4,1

i287 : typeAStiefelCoords({1,4},{1},QQ)

o287 = {| 1 |, QQ[x , x , x ]}

| x_(2,1) | 2,1 3,1 4,1

| x_(3,1) |

| x_(4,1) |

o287 : List

i288 : gens gb I

o288 = | 5x_(4,1)-6 x_(3,1)-1 25x_(2,1)-9 |

1 3

o288 : Matrix (QQ[x , x , x ]) <--- (QQ[x , x , x ])

2,1 3,1 4,1 2,1 3,1 4,1

i289 :

F = matrix{{1/2,4/5,1/2,7/8},{1/2,3/2,1/3,6/5},{8/9,10/9,2,8/5},{1,1/3,2,7/9}}

o289 = | 1/2 4/5 1/2 7/8 |
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| 1/2 3/2 1/3 6/5 |

| 8/9 10/9 2 8/5 |

| 1 1/3 2 7/9 |

4 4

o289 : Matrix QQ <--- QQ

i290 : J = typeASchubertIdeal({2,4},{{1,2},{3,4}},{F},QQ);

o290 : Ideal of QQ[x ..x ]

3,1 4,2

i291 : typeAStiefelCoords({2,4},{1,2},QQ)

o291 = {| 1 0 |, QQ[x ..x ]}

| 0 1 | 3,1 4,2

| x_(3,1) x_(3,2) |

| x_(4,1) x_(4,2) |

o291 : List

i292 : gens gb J

o292 = | 111x_(4,2)+490 333x_(4,1)-2312 37x_(3,2)+114 37x_(3,1)-224 |

1 4

o292 : Matrix (QQ[x ..x ]) <--- (QQ[x ..x ])

3,1 4,2 3,1 4,2

i293 : M = matrix{{1,0},{0,1},{224/37,-114/37},{2312/333,-490/111}}

o293 = | 1 0 |

| 0 1 |

| 224/37 -114/37 |

| 2312/333 -490/111 |

4 2

o293 : Matrix QQ <--- QQ

i294 : F12 = submatrix(F,{0,1})
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o294 = | 1/2 4/5 |

| 1/2 3/2 |

| 8/9 10/9 |

| 1 1/3 |

4 2

o294 : Matrix QQ <--- QQ

i295 : F13 = submatrix(F,{0,2})

o295 = | 1/2 1/2 |

| 1/2 1/3 |

| 8/9 2 |

| 1 2 |

4 2

o295 : Matrix QQ <--- QQ

i296 : F14 = submatrix(F,{0,3})

o296 = | 1/2 7/8 |

| 1/2 6/5 |

| 8/9 8/5 |

| 1 7/9 |

4 2

o296 : Matrix QQ <--- QQ

i297 : F23 = submatrix(F,{1,2})

o297 = | 4/5 1/2 |

| 3/2 1/3 |

| 10/9 2 |

| 1/3 2 |

4 2

o297 : Matrix QQ <--- QQ

i298 : F24 = submatrix(F,{1,3})

o298 = | 4/5 7/8 |
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| 3/2 6/5 |

| 10/9 8/5 |

| 1/3 7/9 |

4 2

o298 : Matrix QQ <--- QQ

i299 : F34 = submatrix(F,{2,3})

o299 = | 1/2 7/8 |

| 1/3 6/5 |

| 2 8/5 |

| 2 7/9 |

4 2

o299 : Matrix QQ <--- QQ

i300 : rank(M | F12)

o300 = 4

i301 : rank(M | F13)

o301 = 3

i302 : rank(M | F14)

o302 = 3

i303 : rank(M | F23)

o303 = 3

i304 : rank(M | F24)

o304 = 3

i305 : rank(M | F34)

o305 = 2
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Once one has the ideal of a Schubert problem, this ideal can be used to study the solutions to the

problem further. Again, this will be key for studying the Galois group of a Schubert problem in the

next chapter, but in the meanwhile we present an application to studying the reality of the solutions

to Derksen’s problem. Using the ideal, we can use another package in Macaulay2, RealRoots.m2

to compute an eliminant for the ideal, which is a single-variable polynomial in the ideal of degree

6 (the number of solutions to the problem). The functionality of RealRoots.m2 then allows us

to count the number of real solutions out of the 6 solutions computed over the complex numbers.

Here is the input and output of the relevant code, showing that out of the 6 solutions, for a particular

choice of general flags, there are 2 real solutions (again the ideal and eliminant suppressed do to

their size):

i3 : loadPackage("SchubertIdeals", Reload => true)

o3 = SchubertIdeals

o3 : Package

i4 : loadPackage("RealRoots", Reload => true)

o4 = RealRoots

o4 : Package

i5 : typeAStiefelCoords({4,8},{1,2,5,6},QQ)

o5 = {| 1 0 0 0 |, QQ[x ..x , x ..x ]}

| 0 1 0 0 | 3,1 4,2 7,1 8,4

| x_(3,1) x_(3,2) 0 0 |

| x_(4,1) x_(4,2) 0 0 |

| 0 0 1 0 |

| 0 0 0 1 |

| x_(7,1) x_(7,2) x_(7,3) x_(7,4) |

| x_(8,1) x_(8,2) x_(8,3) x_(8,4) |

o5 : List

i6 : typeALength({1,2,5,6},8)
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o6 = 4

i7 :

F1 = random(QQ^8,QQ^8)

o7 = | 3/2 2 5/6 6/5 9 4/9 9/10 10/3 |

| 1/10 3/2 4/5 5 3/4 1/4 1/3 7/4 |

| 5/6 7/3 2/3 1/2 3/7 2 9/5 1/10 |

| 5/3 8/7 1/4 2 2 3/2 5/2 1/2 |

| 8/3 3/8 9/5 6/7 1/2 1 9/4 1/9 |

| 1 1/3 3/5 1/5 9/4 1/2 6/5 4/3 |

| 3 2 7/3 4 1 1/2 2/3 4 |

| 5 9/10 8 4 2 8/5 3/10 5/3 |

8 8

o7 : Matrix QQ <--- QQ

i8 : F2 = random(QQ^8,QQ^8)

o8 = | 1/8 5/9 5/7 2/5 9/5 3/2 3/4 1/3 |

| 1/8 8 1/3 6 5/2 5/3 1/2 1/2 |

| 7/9 1/5 7/6 1/7 4/3 4/3 9/8 8/9 |

| 1/9 5 5/6 1/2 1 5/7 3/4 1/3 |

| 2 1/3 3/10 5 2 7/2 2/7 1/8 |

| 1/7 7/5 7/5 9/5 5/2 10/3 1/2 3/8 |

| 3 5/4 7/10 1/3 9/10 5 1/4 9 |

| 7/4 8/3 1/2 3 3 5 2/5 8/5 |

8 8

o8 : Matrix QQ <--- QQ

i9 : F3 = random(QQ^8,QQ^8)

o9 = | 1/8 3 4 1/5 3 9/7 1 1 |

| 5/3 5/3 9/10 3/2 1 2 2 7/3 |

| 3/2 8 4/5 8/3 7/4 2 5 5/8 |

| 4/9 3/7 6/5 1/7 1/4 9/7 3/4 1 |

| 5/2 10/3 1/7 1 3 1/2 2 8 |

| 5/3 5/2 1 2 10 4 6 1 |

| 9/2 5/2 8/9 10/7 3/8 1/3 7/9 1/4 |
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| 7/9 1/2 8/5 6 3/5 3 4/7 1/8 |

8 8

o9 : Matrix QQ <--- QQ

i10 : I = typeASchubertIdeal({4,8},{{1,2,5,6},{1,2,5,6},{1,2,5,6},{1,2,5,6}},{F1,F2,F3},QQ);

o10 : Ideal of QQ[x ..x , x ..x ]

3,1 4,2 7,1 8,4

i11 : dim I

o11 = 0

i12 : degree I

o12 = 6

i13 : f = univariateEliminant(sum(gens ring(I)),I);

i14 : SturmCount(f)

o14 = 2

Finally, we mention that we also implemented code that will compute the ideals for Schubert

problems of Type C. We give our code here for completeness, but again leave out explanations and

examples. We also share our implementation here for creating special types of flags, namely secant

flags, osculating flags, and the parametrized Symplectic flags relevant for computing Schubert

problems in Type C:

secantFlag = method()

secantFlag(List,Ring) := (L,R) -> (

n := length(L);

secantflag := mutableMatrix(R,n,n);

for i from 1 to n do

for j from 1 to n do secantflag_(i-1,j-1) = L_(j-1)^i;

secantflag = matrix secantflag;

return(secantflag))
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randomSecantFlag = method()

randomSecantFlag(ZZ,Ring) := (n,R) -> (

L := {};

for i from 1 to n do

L = append(L,random(R)*random(R));

return(secantFlag(L,R)))

-- Osculating Flags

osculatingFlag = method()

osculatingFlag(QQ, ZZ) := (t,n) -> (

F := mutableMatrix(QQ,n,n);

for i from 0 to n-1 do

for j from i to n-1 do

F_(j,i) = t^(j-i)/((j-i)!);

F = matrix F;

return F)

parametrizedSymplecticFlag = method()

parametrizedSymplecticFlag(QQ, ZZ) := (t, n) -> (

F := mutableMatrix(QQ,n,n);

for i from 0 to n-1 do F_(i,0) = t^(i)/(i!);

for j from 1 to n-1 do

for k from j to n-1 do

F_(k,j) = F_(k-1,j-1);

for l from sub(n/2,ZZ) to n-1 do if odd l then

for m from 0 to n-1 do

F_(l,m) = -1*F_(l,m);

F = matrix F;

return F)

typeCGrassmannianSchubertIdeal = method()

typeCGrassmannianSchubertIdeal(List,List,List,Ring) := (grassmannianshape,alphas,flags,K) -> (

k := grassmannianshape_(0);

n := grassmannianshape_(1);

coords := typeCStiefelCoords(grassmannianshape,alphas_(0),K);

R := coords_(1);

I := coords_(2);

PY := exteriorPower(k,coords_(0));

for i from 1 to length(alphas)-1 do

I = I +
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ideal(cauchyBinetCoefficients(grassmannianshape,allNotGreaterThan(alphas_(i),n),flags_

(i-1),K)*PY);

return(I))

typeCSchubertIdeal = method()

typeCSchubertIdeal(List,List,List,Ring) := (flagshape,conditions,flags,K) -> (

n := last(flagshape);

s := length(flags);

subspaces := delete(n,flagshape);

bigRing := (typeCStiefelCoords(flagshape,conditions#0,K))#1;

eqns := ideal(0_bigRing);

for a in subspaces do(

conds := {take(conditions#0,a)};

for i from 1 to s do(

conds = append(conds,sort(take(conditions#i,a))));

eqns = eqns + sub(typeCGrassmannianSchubertIdeal({a,n},conds,flags,K),bigRing));

return(eqns))
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4. SUMMARY AND CONCLUSIONS

4.1 The Frobenius Map and Cycle Types

Fix a prime p, and let Fp be the algebraic closure of Fp = Z/pZ, the finite field with p elements.

Lemma 4.1.1. Every finite extension of Fp of a given degree is unique up to isomorphism.

Proof. Let K be a finite extension of Fp of degree n (K is an n-dimensional Fp-vector space).

Then as an Fp-vector space, K ∼= (Fp)n, so as a set, K has pn elements. Since K is a field, its non-

zero elements K∗ form a multiplicative group of order pn − 1, so satisfy the polynomial equation

xp
n−1 = 1 by Lagrange’s Theorem. Hence, all pn elements of K satisfy xpn = x (after multiplying

the previous equation by x), which has at most pn roots over Fp (since Fp is a field). Therefore,

K is isomorphic to the splitting field of the polynomial xpn − x over Fp, and splitting fields are

unique up to isomorphism.

Since it is unique up to isomorphism, we denote by Fpn any degree n extension of Fp. As the

algebraic closure of a field is the union of all finite extensions, we can thus write Fp =
⋃∞
n=1 Fpn

(after embedding all such extensions into Fp.

Now we are ready to introduce the Frobenius map, which is our main topic of study for this

section, and the key ingredient to the Frobenius algorithm.

Definition 4.1.2. The Frobenius map is Frob : Fp → Fp, defined by Frob(α) = αp. Frob is

also referred to as the Frobenius endomorphism or Frobenius automorphism, the latter justified

below.

Proposition 4.1.3. Frob is a field automorphism with Fp as its fixed field.

Proof. Recall that a field automorphism is a bijective homomorphism from a field to itself. Frob

is a field homomorphism, since Frob(1) = 1p = 1 ̸= 0, and Frob(αβ) = (αβ)p = αpβp =

Frob(α) Frob(β) and Frob(α+ β) = (α+ β)p =
∑p

k=0

(
p
k

)
αp−kβk by the Binomial Theorem. By
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definition,
(
p
k

)
= p!

k!(p−k)! , so if 1 ≤ k ≤ p − 1, p! is divisible by p, but neither k! nor (p − k)! are

divisible by p (since their prime factors are all smaller than p, and p is prime). Hence in Fp,
(
p
k

)
= 0

for 1 ≤ k ≤ p−1, and
(
p
0

)
=

(
p
p

)
= 1, so Frob(α+β) = (α+β)p = αp+βp = Frob(α)+Frob(β).

Note that every homomorphism of fields is injective, since the kernel of a field homomorphism

is an ideal, and a field has only itself and {0} as ideals. Thus since Frob is a field homomorphism,

it is injective.

Let F denote the restriction of Frob to Fpn . Note Fpn is contained in the image of F , since Fpn

is a field (closed under taking pth powers). Since F is injective and Fpn is a finite set, F is thus

surjective as well. Therefore, Fp =
⋃∞
n=1 Fpn implies that Frob is surjective.

From the proof of Lemma 4.1.1, F n(x) = xp
n
= x for all x ∈ Fpn , so by degree consideration,

Fpn is the fixed field of F n. In particular, Fp is the fixed field of Frob.

We now move on to discussing the cycle type of the Frobenius map as a Galois group element,

viewed as an element of a permutation group. The following lemmas help build towards this.

Recall that a separable polynomial is one with no repeated roots.

Lemma 4.1.4. Let L be any field. A monic polynomial f ∈ L[x] is separable if and only if the

greatest common divisor (f, f ′) = 1, where f ′ is the formal derivative of f .

Proof. (⇒) Let a1, . . . , an ∈ L be the distinct roots of f . If f is separable, then it is of the form

f = (x− a1) · · · (x− an) in L[x], with ai ̸= aj for i ̸= j. Hence, the formal derivative (using the

product rule many times) is

f ′ = (x− a2) · · · (x− an) + (x− a1)(x− a3) · · · (x− an) + · · ·+ (x− a1) · · · (x− an−1)

. Since we’re computing the greatest common divisor over L, (f, f ′) = 1 is equivalent to f and f ′

not having any common roots. Since the roots a1, . . . an of f are not roots of f ′ (evaluating f ′ at
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ai, only one term doesn’t cancel, and is a product of non-zero elements of L), (f, f ′) = 1.

(⇐ via contrapositive) If f is inseparable, then it is of the form f = (x− a)2h(x) in L[x]. Hence,

the formal derivative (using the product rule) is f ′ = 2(x− a)h(x) + (x− a)2h′(x). Since (x− a)

divides both f and f ′ (even if the characteristic of L is 2, h′(x) = 0, or both), (f, f ′) ̸= 1.

Lemma 4.1.5. An irreducible polynomial g ∈ Fp[x] is separable.

Proof. Dividing by the leading coefficient, we may assume that g is monic. Then, either (g, g′) = 1

(by degree considerations and g being irreducible), or g′ = 0, causing (g, g′) = g. However, g′ = 0

implies that every exponent of g is divisible by p (by the power rule when computing g′. Hence, g =

arx
pbr+· · ·+a1xpb1+a0xpb0 = (arx

br)p+· · ·+(a1x
b1)p+(a0x

b0)p = (arx
br+· · ·+a1xb1+a0xb0)p

(using api = ai for all i by Fermat’s Little Theorem and induction on ap + bp = (a + b)p, proved

earlier). Hence g′ = 0 implies g is a pth power and thus not irreducible, a contradiction. Therefore,

(g, g′) = 1, so by the previous Lemma, g is separable.

Consider an irreducible polynomial g ∈ Fp[x] of degree n and its splitting field K. Since g is

separable,K/Fp is a Galois extension. Thus,G = Gal(K/Fp) permutes the n roots of g. Choosing

an ordering for the roots of g, this gives an isomorphism of G with a subgroup of Sn, and one can

consider cycle types of elements ofG under this isomorphism. Again denoting by F the restriction

of Frob to K, F ∈ G, so one can ask for the cycle type of F . The answer is remarkable, and

nowhere near true over Q (already breaking over Q for irreducible cubic polynomials).

Proposition 4.1.6. With the setup as above, G is always cyclic of order n, with F as generator.

Hence, F has cycle type n (also stated as F is an n-cycle).

Proof. First, we show that K∗ (same as K \ {0}) is cyclic. We know that K∗ is a finite abelian

group (of order pn − 1, where n = |G| is the degree of the extension). Hence, by the Funda-

mental Theorem of Finite Abelian Groups, K∗ ∼= Z/u1Z × . . . × Z/ukZ, where u1| . . . |uk, and

|K| = pn − 1 = u1 . . . uk. By this isomorphism, we know that xuk = 1 for all x ∈ K∗, but since

the polynomial xuk − 1 has at most uk many roots and K∗ has pn − 1 many elements, this forces
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uk = pn− 1 (since we already know xp
n−1 = 1 for all x ∈ K∗). Thus, K∗ ∼= Z/(pn− 1)Z, and so

is cyclic.

Now, since K∗ is cyclic, there exists some x that generates K∗. In other words, every element

of K∗ is uniquely of the form xl for 1 ≤ l ≤ pn − 1. Let σ ∈ G. Then, since σ is by definition

an automorphism of K, σ(0) = 0, σ(x) ∈ K∗ =⇒ σ(x) = xk for some k, and in general,

σ(xl) = (σ(x))l = (xk)l = xkl = (xl)k. With 0k = 0 as well, we can then say that each σ ∈ G is

defined by sending every element y in K to yk, for some k (i.e. it is a “kth-power map). Note that

every element of G must have this property, but not every kth power map will be in G.

Let k = pmr, where p ∤ r. Then, (1+x)k = (1+x)p
mr = [(1+x)p

m
]r = (1+xp

m
)r =

∑r
i=0

(
r
i

)
xr

mi

(by induction on (1 + x)p = 1 + xp and the Binomial Theorem). Since p ∤ r,
(
r
1

)
= r ̸= 0 ∈ Fp,

and so if r ̸= 1, r is the coefficient of a term in (1 + x)k besides 1 and xk. Thus if r ̸= 1, the

polynomial (1 + x)k − (1 + xk) is not the zero polynomial, and has degree less than k ≤ pn − 1,

but K has pn elements, so it cannot be that (1 + x)k = 1 + xk for all x ∈ K. Hence, if r ̸= 1, the

kth power map σ(y) = yk is not a field homomorphism, and so cannot be in G. Therefore, for kth

power maps σ ∈ G, it must be that r = 1, so k is a power of p. We show in fact that all such maps

are in G, and thus are precisely the elements of G.

Now, note that the map σ(x) = xp
m

= Fm(x), which is a composition of F ∈ G with itself

m times. G is a group, so the only possible elements of G are of the form Fm for 1 ≤ m ≤ n.

Hence, |G| ≤ n. Further, xpm − x = 0 for all x ∈ K is only possible due to degree constraints if

m = n, so the elements {F, F 2, . . . , F n} are all distinct, with F n = IdK . Therefore, G = ⟨F ⟩, so

is cyclic of order n, and viewing F as permuting the roots of g = f mod p, F is an n-cycle.

The general case (g not necessarily irreducible) follows as a corollary.

Corollary 4.1.7. Let g ∈ Fp[x] with splitting field K, and denote by F and G the Frobenius

restriction and Galois group as before. Then, the cycle type of F matches the decomposition type
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of g over Fp (the list of the degrees of the factors of g, sorted as a partition).

Proof. Fp[x] is a unique factorization domain, so let g = g1 . . . gk be a decomposition of g as the

product of irreducible polynomials. Since F permutes the roots of each irreducible factor gi of g

separately, by Proposition 4.1.6, F acts as a deg(gi) cycle on the roots of gi, so the cycle type of F

in G is (deg(g1), . . . , deg(gk)), which matches the decomposition type of g by definition.

4.2 An Aside: Frobenius as a Natural Transformation

Since the Frobenius map can be generalized to be over any ring of characteristic p, its univer-

sality can be extended (not necessary to future discussion, but interesting nonetheless).

Proposition 4.2.1. Let A be a characteristic p ring, and let FrobA : A → A be the generalized

Frobenius map sending each a ∈ A to ap ∈ A. If A has no nonzero nilpotent elements, then FrobA

is injective. Also FrobA is not in general surjective, even if A is a field.

Proof. Let A have no nonzero nilpotent elements, and say Frob(a) = 0. Then ap = 0, so by

definition, a is a nilpotent, so it must be that a = 0, so Frob is injective. For a counterexample

to surjectivity, let A = Fp(t). Then, the image of FrobA does not contain t, since if it did, there

would be a rational function f(t)
g(t)

∈ A such that f(t)p

g(t)p
= t. However, the degree of t = f(t)p

g(t)p
is

p · deg(f)− p · deg(g), which is a multiple of p, contradicting that deg(t) = 1.

Since Frob is not necessarily surjective, we avoid the term “Frobenius automorphism" and only

say “Frobenius endomorphism" in general. Let K be a field of characteristic p. Then by above,

Frob : K → K is injective. If Frob is surjective on K (so is an automorphism), we say that the

fieldK is perfect. Hence, we have seen that Fp and finite extensions of Fp are perfect (in fact so are

all reduced Artinian algebras over Fp, which are products of finite field extensions), but Fp(t) is not.

We now recall some category theory:

Definition 4.2.2. A (small) category C consists of the following data:

1. A collection (class) of objects.
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2. For every two (not necessarily distinct) objects A and B in C, a set of morphisms, denoted

by HomC(A,B).

3. For every three (not necessarily distinct) objectsA,B, andC in C, a function ◦ : HomC(B,C)×

HomC(A,B) → HomC(A,C), called composition. Here ◦(g, f) is denoted by g ◦ f , and

the composition function is required to be associative, i.e. for every four (not necessar-

ily distinct) objects A, B, C, and D in C, if h ∈ HomC(C,D), g ∈ HomC(B,C), and

f ∈ HomC(A,B), then h ◦ (g ◦ f) = (h ◦ g) ◦ f in HomC(A,D).

4. For each object A in C, an identity morphism 1A ∈ HomC(A,A) satisfying for any f ∈

HomC(A,B) and f̃ ∈ HomC(B,A), f ◦ 1A = f and 1A ◦ f̃ = f̃ .

For example, some categories first encountered are the category of sets and set functions,

the category of vector spaces and linear transformations, and the categories of the real numbers

R (so only one object) with different sets of morphisms, such as continuous, differentiable, or

Riemann-integrable functions. For our purposes, we will consider the category of all characteristic

p rings with morphisms being ring homomorphisms between such rings, and denote this category

as Ringp.

Definition 4.2.3. A (covariant) functor F : C → D between categories C and D assigns to

1. Every object A in C, an object F(A) in D, and to

2. Every morphism f ∈ HomC(A,B), a morphism F(f) ∈ HomD(F(A),F(B)), such that

3. F(g ◦ f) = F(g) ◦ F(f) (F preserves composition), and

4. F(1A) = 1F(A) (F preserves identity).

A first example of a functor is the “forgetful functor" that sends a vector space to its underlying

set (forgetting the addition and scalar multiplication structures), and a linear transformation to its

underlying set function (forgetting that the map is linear). For our purposes, we consider an even

more basic functor, the identity functor Id : Ringp → Ringp that just sends characteristic p rings

and homomorphisms to themselves.
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Definition 4.2.4. If F and G are functors from a category C to a category D, a natural transfor-

mation φ : F → G is a collection of morphisms in D {φA : F(A) → G(A)}, one for each object

A in C, such that for each morphism f : A→ B in C the diagram commutes:

F(A) G(A)

F(B) G(B)

φA

F(f) G(f)

φB

An important first example of a natural transformation is the determinant of an n × n matrix

for some fixed n. Here C is the category of commutative rings and ring homomorphisms, D is the

category of groups and group homomorphisms, F is the functor that takes a ring R to the general

linear group GLn(R) of invertible n × n matrices over R, and G is the functor that takes a ring

R to its group of units (invertible elements) R∗. Then, for any ring R, the determinant is a group

homomorphism det : GLn(R) → R∗ that takes a matrix to its determinant. It is a homomorphism

since for matrices A,B ∈ GLn(R), det(AB) = det(A) det(B), and is a natural transformation

since the determinant of a matrix is a polynomial in the entries of the matrix. Hence, given a ring

homomorphism f : R → S, it does not matter if one applies f to all the entries of a matrix A, and

then one takes the determinant of that matrix, or if one takes the determinant of the matrix first,

and then applies f to the result (since f is a ring homomorphism). The determinant being a natural

transformation encapsulates that it is a map that is universally defined, independent of the ring or

specific matrix one is working with.

For our purposes, F = G = Id, and Frob : Ringp → Ringp is the collection of Frobenius maps

{FrobA : A→ A} running over each characteristic p ring A.

Proposition 4.2.5. The Frobenius map is a natural transformation from the identity functor on the

category of characteristic p rings to itself.

Proof. All we must show is that for every two characteristic p rings A and B, and ring homomor-
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phism f : A→ B between them, that the diagram below commutes:

A A

B B

FrobA

f f

FrobB

In other words, we must show that FrobB ◦f = f ◦ FrobA, but this is just that for every a ∈ A,

f(a)p = f(ap), which is always true since f is a ring homomorphism.

Basically, what we’ve shown is that Frobenius is a “natural" map that arises whenever you have

a characteristic p ring, defined “universally" and independently of the particular ring. Furthermore,

it respects the morphisms in that category. The Frobenius automorphism is even more general than

this, and can be extended to schemes over rings of characteristic p.

4.3 Lifting Frobenius to Characteristic 0

Now, we consider a separable polynomial f ∈ Z[x] ⊂ Q[x] and its splitting field E over Q.

We want to understand the Galois group M = Gal(E/Q), but first take a detour by reducing ev-

erything modulo a prime. For any prime p ∈ Z (not dividing the discriminant ∆(f)), we get the

induced polynomial g = (f mod p) ∈ Fp[x] (where each coefficient of f in Z is reduced modulo

p). The polynomial g has a splitting field K and Galois group G over Fp, and the Frobenius map

F ∈ G acts on the roots of g as a permutation with cycle type determined by the decomposition

type (degrees of irreducible factors) of g. The goal of this section is to lift F ∈ G to a Frobenius

substitution σp ∈ M that has the same cycle type as F . This σp will not be unique, but will be

unique up to conjugation, and since conjugacy classes in a permutation group correspond to cycle

types, we will obtain the cycle type of an element ofM . In other words, we gain information about

M by reducing f modulo a prime to get g, with the decomposition type of g corresponding to the

cycle type of an element of M .

To understand the Frobenius substitution σp, we must first understand the mathematical notion

of a place.
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Definition 4.3.1. Let E/Q be a finite extension. A place of E over p is a map ψ : E → Fp ∪ {∞}

for which

1. ψ−1(Fp) is a subring of E, and ψ : ψ−1(Fp) → Fp is a ring homomorphism, and

2. For nonzero x ∈ E, ψ(x) = ∞ ⇐⇒ ψ(x−1) = 0

Note that the symbol ∞ is required if we want to take elements of E mod p, since if we desire

p mod p = 0, then 1
p

mod p = 1
0

mod p = ∞. Here are the basic facts about places:

Proposition 4.3.2. With the setup above, let p ∤ ∆(f).

1. A place of E over p exists.

2. If ψ and ψ′ are places of E over p, then ψ = ψ′ ◦ τ for some τ ∈M = Gal(E/Q).

3. The element τ ∈M in (2) is determined by ψ and ψ′.

4. If ψ is a place of E over p, and α1, . . . , αn are the roots of f , with g = f mod p, then

ψ(α1), . . . , ψ(αn) are the roots of g in Fp.

Proof. Let α1, . . . , αn be the roots of f (monic and irreducible, with integer coefficients), let p be a

prime not dividing the discriminant of f , and let β1, . . . , βn be the roots of g = f mod p. Hence,

both f and g are separable, and E = Q(α1, . . . , αn).

We first show that no place ψ : E → Fp ∪ {∞} of E over p sends any root αi to ∞. By way

of contradiction, and without loss of generality, assume ψ(α1) = ∞. Then by the definition of a

place (as f is irreducible, 0 is not a root of f ), ψ(α−1
1 ) = 0, so if R = ψ−1(Fp), α−1

1 ∈ R, but

α1 /∈ R. Now, since Q is a field, Q(α1) = Q(α−1
1 ) = Q[α−1

1 ], so there exists h ∈ Q[x] such that

α1 = h(α−1
1 ). In fact, we can construct h from f as follows: if f(x) = xn+cn−1x

n−1+· · ·+c1x+c0

for some ci ∈ Z, α1 a root of f implies f(α1) = αn + cn−1α
n−1
1 + · · · + c1α1 + c0 = 0, so

(α−1
1 )n−1f(α1) = α1 + cn−1 + · · · + c1(α

−1
1 )n−2 + c0(α

−1
1 )n−1 = 0. Solving for α1, we obtain
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α1 = −[cn−1+cn−2α
−1
1 + · · ·+c1(α−1

1 )n−2+c0(α
−1
1 )n−1]. This right hand side is our h, with coef-

ficients in Z ⊆ R, so α1 = h(α−1
1 ) ∈ R (since R is a ring), a contradiction. Hence, no ψ(αi) = ∞.

Next, we show that R = Z(p)[α1, . . . , αn], where Z(p) = {a
b
∈ Q | p ∤ b}. Since R ⊆ E

must be a subring, 0, 1 ∈ R, and so Z ⊆ R. Since Fp has characteristic p and ψ|R is a ring ho-

momorphism, ψ maps Z to the prime subring of Fp, which is Fp. Hence, by the universal property

of localization, since Z \ pZ ⊆ Z is multiplicatively closed, contains 1, and avoids the kernel

(is in fact the complement of the kernel in this case), the map ψ|Z extends to a well-defined ring

homomorphism on Z(p) = (Z \ pZ)−1Z ⊆ E. In other words, for a
b
∈ Q reduced, we have

ψ(a
b
) =


(a mod p)(b mod p)−1, if p ∤ b (i.e. a

b
∈ Z(p)),

∞, if p | b (i.e. a
b
/∈ Z(p))

, the last part coming from the defi-

nition of a place, since if p | b, (a
b
)−1 = b

a
∈ Z(p) (since reduced) is sent via ψ to 0. Then by our

previous argument, each αi ∈ R, so R = Z(p)[α1, . . . , αn] (since R contains Z(p) and the αi, and

no other elements of Q by above).

Now, we show that each ψ(αi) is a root of g. We do this by proving the commutativity of the

diagram

R R

Fp Fp

f |R

ψ|R ψ|R

g

, i.e. that g ◦ ψ|R = ψ|R ◦ f |R. For any x ∈ R, if f(x) =
∑
cix

i, ψ|R is a ring homomor-

phism, so ψ|R(f(x)) =
∑
ψ(ci)ψ(x)

i = (ci mod p)ψ(x)i = g(ψ(x)), since g = f mod p

by definition. Hence, the diagram commutes. In particular, evaluating x at αi ∈ R yields

g(ψ(αi)) = ψ(f(αi)) = ψ(0) = 0, again since ψ|R is a ring homomorphism. Thus, each ψ(αi) is

a root of g. Furthermore, if ψ(αi) = ψ(αj) for some i ̸= j, then ψ|R a ring homomorphism and

∆(f) =
∏

k<l(αk − αl)
2 gives 0 = ψ(∆(f)) = (∆(f) mod p), but p ∤ ∆(f), a contradiction.

Hence, the ψ(αi) are distinct, and so since deg(f) = deg(g) = n, {ψ(α1), . . . , ψ(αn)} is the
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collection of roots of g.

Finally, we give a construction of all the places of E over p, revealing that places exist and are

related to one another via composition with Galois group elements. We do this by reviewing the

algorithm for (non-uniquely) constructing E as the splitting field of f . We already know how ψ

must act on Q by our above argument, so we just have to determine ψ(αi) for each root αi, and that

this gives a ring homomorphism. First, without loss of generality Q ⊊ Q[α1] = Q[x]/(f) ⊆ E,

so we define ψ(α1) = β1. If Q[α1] = E, each αi can be written as a polynomial in α1, so ex-

tend ψ accordingly so that it is a ring homomorphism, and we are done. Note that in this case,

our Galois group M must be isomorphic to Z/nZ. If Q[αi] ̸= E, still extend ψ so it is a ring

homomorphism on each αi ∈ Q[α1] as before. After possibly relabeling, say α2 /∈ Q[α1]. Hence,

Q ⊊ Q[α1] ⊊ Q[α1, α2] ⊆ E, so define (again after possibly relabeling so that β2 is not ψ(αi)

for any αi ∈ Q[α1]), define ψ(α2) = β2. Again, if Q[α1, α2] = E, we can write the remain-

ing αi as polynomials in α1 and α2, so extend ψ accordingly so that it is a ring homomorphism.

If Q[α1, α2] ̸= E, we repeat this process, which is guaranteed to terminate since by definition

E = Q[α1, . . . , αn]. Note that if we had to do the process the maximum of n times, this implies

that our Galois group M must be isomorphic to Sn.

With this process, we have ψ(α1) = β1, and for i ̸= 1, there exists βj with ψ(αi) = βj , so we

get a permutation of {α1, . . . , αn} based on the indices of their images. Due to the choices made

in our construction, any other permutation from a place ψ′ with ψ(α1) = β1 is only achievable if

there is a Galois group element τ ∈ M such that ψ = ψ′ ◦ τ , and this τ is unique since we are

viewing the field automorphism based on how it permutes the roots of f . Furthermore, the choice

ψ(α1) = β1 was arbitrary, so by considering the other choices ψ(αi) = β1, and compositions with

elements of our Galois group M , we get all possible constructions of E (up to isomorphism), as

well as the corresponding permutations of the roots of f , which define corresponding places. Note

note all permutations are necessarily achievable in this way, but the permutations that do arise are
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precisely those given by M acting on the roots of f , completing our proof.

Definition 4.3.3. Let p ∤ ∆(f) and let ψ be a place of E over p (exists by Proposition 4.3.2). Then,

Frob ◦ψ is also a place of E over p (after defining Frob(∞) = ∞), and so by Proposition 4.3.2,

there is a unique element, Frobψ ∈ M , called the Frobenius substitution, for which ψ ◦ Frobψ =

Frob ◦ψ.

Proposition 4.3.4. Frob ∈ G and Frobψ ∈M , viewed as permutations, have the same cycle type.

Proof. By definition, Frobψ is characterized by ψ(Frobψ(x)) = Frob(ψ(x)) for all x ∈ E.

Hence, Frobψ permutes the roots α1, . . . , αn of f in the same way as Frob permutes the roots

ψ(α1), . . . , ψ(αn) of g, and so Frob and Frobψ have the same cycle type.

Proposition 4.3.5. While Frobψ depends on the choice of place ψ, it is unique up to conjugation.

Proof. By the previous proposition, any other place of E over p is of the form ψ ◦τ . So by the def-

inition of the Frobenius substitution (with τ(x) replacing x), ψ(Frobψ(τ(x))) = Frob(ψ(τ(x))).

Inserting a τ ◦ τ−1 in a clever way on the left hand side, we obtain, (ψ ◦ τ)((τ−1 ◦Frobψ ◦τ)(x)) =

Frob((ψ ◦ τ)(x)). However, this is the characterizing property of the Frobenius substitution

Frobψ◦τ , and so Frobψ◦τ = τ−1 ◦ Frobψ ◦τ . Hence, as ψ varies over the places of E over a

fixed prime p, Frobψ ranges over a conjugacy class in M .

We denote by σp a general member of the above conjugacy class, which is our desired Frobenius

substitution as discussed at the beginning of this section.

Everything that has been discussed in this section can be extended in a natural way to the case

where f ∈ L[x], where L is a finite extension of Q. See Lang VII for more details.

4.4 Using Frobenius to Study Galois Groups over Q

For us, we will be fixing a “large" prime p (think 10009 for example). We consider enumerative

geometry problems with a parameter space, where the number of solutions is constant for a dense

open subset of parameters. For each choice of parameters (an “instance" of the problem), we obtain

a zero-dimensional ideal I , which via proper choice of Gröbner basis has an eliminant f ∈ Q[x],

147



which is the f we consider as in the previous section. The roots of this eliminant f completely

determine the solutions to our instance of our problem. Importantly, we can reduce f modulo p to

obtain a polynomial g ∈ Fp[x], and note by the previous sections that its decomposition type is the

same as the cycle type of our lifted Frobenius substitution σp in our Galois group M . In this way,

we obtain information (a cycle type) about one element of M . By choosing random parameters

for the problem again, we again gain information about the cylcle type of an element of M . In

fact, for p large enough, we are sampling σp ∈ M uniformly, and so the frequencies of the cycle

types obtained via this Frobenius algorithm approach the distribution of the cycle types in M . By

sampling many elements and seeing which cycle types arise and at what frequencies, one can often

uniquely identify the group M . Since for a problem with d solutions, M ⊆ Sd is a transitive

subgroup, understanding the structure of the transitive subgroups of Sd is critical in identifying the

group M .

We demonstrate this again using the SchubertIdeals.m2 package, as well as our additional

coding up of the Frobenius algorithm. Below our example is again Derksen’s problem that 6 4-

planes in Gr(4, 8) intersect four general 4-planes in Gr(4, 8), each in dimension at least two.

loadPackage("SchubertIdeals")

loadPackage("RealRoots")

smartFactor = method()

smartFactor(RingElement) := (F) ->(

P:=factor(F);

L1:=new List from(P);

L2:=for p in L1 list(new List from p);

return(L2)

)

-- Heuristic: numiterations = 6*numsols

frobeniusAlgorithm = method()

frobeniusAlgorithm(List,ZZ,ZZ,ZZ) := (L,p,numsols,numiterations) -> (

flagtype := L_(0);

n := last(flagtype);

conditions := L_(1);

l := length(conditions);
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P := ZZ/p;

datastuff := {};

fullcycle := false;

fullminusonecycle := false;

primecycle := false;

for i from 1 to numiterations do(

flags := {};

for j from 1 to (l-1) do(

flags = append(flags,random(P^n,P^n)));

if det(product(flags)) == 0 then continue;

I := typeASchubertIdeal(flagtype,conditions,flags,P);

f := smartFactor univariateEliminant(sum(gens ring(I)),I);

degreecyclelist := sort(flatten for fac in f list(degree(fac#0)));

if sum(degreecyclelist) != numsols then continue;

if sum(degreecyclelist) == numsols then datastuff = append(datastuff,degreecyclelist);

if degreecyclelist == {numsols} then fullcycle = true;

if degreecyclelist == {1,numsols-1} then fullminusonecycle = true;

for k in degreecyclelist do(

if (k > numsols/2) and (k <= numsols-2) and (isPrime(k)==true) then primecycle = true);

if ((fullcycle == true) and (fullminusonecycle == true) and (primecycle == true)) then break;

);

frequencytable := {};

for cycle in unique(datastuff) do(

frequencytable = append(frequencytable,(cycle,number(datastuff,i->i==cycle))));

return(fullcycle,fullminusonecycle,primecycle,frequencytable)

)

frobeniusDegreeThree = method()

frobeniusDegreeThree(List,ZZ,ZZ,ZZ) := (L,p,numsols,numiterations) -> (

flagtype := L_(0);

n := last(flagtype);

conditions := L_(1);

l := length(conditions);

P := ZZ/p;

datastuff := {};

twocycle := false;

for i from 1 to numiterations do(

flags := {};

for j from 1 to (l-1) do(

flags = append(flags,random(P^n,P^n)));

if det(product(flags)) == 0 then continue;
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I := typeASchubertIdeal(flagtype,conditions,flags,P);

f := smartFactor univariateEliminant(sum(gens ring(I)),I);

degreecyclelist := sort(flatten for fac in f list(degree(fac#0)));

if sum(degreecyclelist) != numsols then continue;

if sum(degreecyclelist) == numsols then datastuff = append(datastuff,degreecyclelist);

if degreecyclelist == {1,2} then twocycle = true;

if (twocycle == true) then break;

);

frequencytable := {};

for cycle in unique(datastuff) do(

frequencytable = append(frequencytable,(cycle,number(datastuff,i->i==cycle))));

return(twocycle,frequencytable)

)

frobeniusDegreeFour = method()

frobeniusDegreeFour(List,ZZ,ZZ,ZZ) := (L,p,numsols,numiterations) -> (

flagtype := L_(0);

n := last(flagtype);

conditions := L_(1);

l := length(conditions);

P := ZZ/p;

datastuff := {};

threecycle := false;

fourcycle := false;

for i from 1 to numiterations do(

flags := {};

for j from 1 to (l-1) do(

flags = append(flags,random(P^n,P^n)));

if det(product(flags)) == 0 then continue;

I := typeASchubertIdeal(flagtype,conditions,flags,P);

f := smartFactor univariateEliminant(sum(gens ring(I)),I);

degreecyclelist := sort(flatten for fac in f list(degree(fac#0)));

if sum(degreecyclelist) != numsols then continue;

if sum(degreecyclelist) == numsols then datastuff = append(datastuff,degreecyclelist);

if degreecyclelist == {1,3} then threecycle = true;

if degreecyclelist == {4} then fourcycle = true;

if ((threecycle == true) and (fourcycle == true)) then break;

);

frequencytable := {};

for cycle in unique(datastuff) do(

frequencytable = append(frequencytable,(cycle,number(datastuff,i->i==cycle))));
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return(threecycle,fourcycle,frequencytable)

)

frobeniusDegreeFive = method()

frobeniusDegreeFive(List,ZZ,ZZ,ZZ) := (L,p,numsols,numiterations) -> (

flagtype := L_(0);

n := last(flagtype);

conditions := L_(1);

l := length(conditions);

P := ZZ/p;

datastuff := {};

twothreecycle := false;

for i from 1 to numiterations do(

flags := {};

for j from 1 to (l-1) do(

flags = append(flags,random(P^n,P^n)));

if det(product(flags)) == 0 then continue;

I := typeASchubertIdeal(flagtype,conditions,flags,P);

f := smartFactor univariateEliminant(sum(gens ring(I)),I);

degreecyclelist := sort(flatten for fac in f list(degree(fac#0)));

if sum(degreecyclelist) != numsols then continue;

if sum(degreecyclelist) == numsols then datastuff = append(datastuff,degreecyclelist);

if degreecyclelist == {2,3} then twothreecycle = true;

if (twothreecycle == true) then break;

);

frequencytable := {};

for cycle in unique(datastuff) do(

frequencytable = append(frequencytable,(cycle,number(datastuff,i->i==cycle))));

return(twothreecycle,frequencytable)

)

frobeniusDegreeSix = method()

frobeniusDegreeSix(List,ZZ,ZZ,ZZ) := (L,p,numsols,numiterations) -> (

flagtype := L_(0);

n := last(flagtype);

conditions := L_(1);

l := length(conditions);

P := ZZ/p;

datastuff := {};

twothreecycle := false;

fivecycle := false;
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for i from 1 to numiterations do(

flags := {};

for j from 1 to (l-1) do(

flags = append(flags,random(P^n,P^n)));

if det(product(flags)) == 0 then continue;

I := typeASchubertIdeal(flagtype,conditions,flags,P);

f := smartFactor univariateEliminant(sum(gens ring(I)),I);

degreecyclelist := sort(flatten for fac in f list(degree(fac#0)));

if sum(degreecyclelist) != numsols then continue;

if sum(degreecyclelist) == numsols then datastuff = append(datastuff,degreecyclelist);

if degreecyclelist == {1,2,3} then twothreecycle = true;

if degreecyclelist == {1,5} then fivecycle = true;

if ((twothreecycle == true) and (fivecycle == true)) then break;

);

frequencytable := {};

for cycle in unique(datastuff) do(

frequencytable = append(frequencytable,(cycle,number(datastuff,i->i==cycle))));

return(twothreecycle,fivecycle,frequencytable)

)

-- EXAMPLE of Computing Frobenius Elements for the Galois group to Derksen’s Problem:

i3 : loadPackage("SchubertIdeals", Reload => true)

o3 = SchubertIdeals

o3 : Package

i4 : loadPackage("RealRoots", Reload => true)

o4 = RealRoots

o4 : Package

i6 : F1 = random((ZZ/10009)^8,(ZZ/10009)^8)

o6 = | -2926 -3311 2520 -1653 -3648 -2745 3186 4037 |

| -3427 -6 1411 4873 3358 3954 -301 4208 |

| 3638 -1963 3419 3139 3769 765 -109 -1570 |

| -3682 3763 1830 2797 152 1123 2298 2878 |

| -2291 2776 -295 -2869 -1482 714 -4604 2581 |
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| 17 -1528 -4273 -4041 -3346 2855 1648 4041 |

| 2467 1438 1529 -4985 -4484 -1338 -116 4615 |

| -399 -1372 2658 4400 -4998 983 -3871 -398 |

ZZ 8 ZZ 8

o6 : Matrix (-----) <--- (-----)

10009 10009

i7 : F2 = random((ZZ/10009)^8,(ZZ/10009)^8)

o7 = | -4007 4394 3212 5000 1320 4499 419 1872 |

| -4479 3422 -1330 3639 453 2740 65 -1030 |

| -1465 -1134 -4371 -572 -2050 1706 -2566 2959 |

| 698 1600 366 3820 -785 -2493 -322 3530 |

| 3459 -1341 -2347 -4912 2857 457 -2397 -3723 |

| -1769 1892 1223 415 -2977 2458 -2397 3705 |

| -760 -3231 232 2721 -2527 -2362 -1187 -1235 |

| 3360 -139 1562 -4920 -2764 4007 -3354 -4031 |

ZZ 8 ZZ 8

o7 : Matrix (-----) <--- (-----)

10009 10009

i8 : F3 = random((ZZ/10009)^8,(ZZ/10009)^8)

o8 = | 1381 -1970 -597 1998 -2628 -2523 1868 3761 |

| 3800 4624 2963 3687 -1470 -2936 -4126 -4840 |

| -2190 1428 3314 -4063 4072 -3064 1695 -294 |

| -681 3514 -4748 -1250 606 2980 -4581 1719 |

| -3800 1107 -1204 1715 -1917 -2615 -3781 3177 |

| -2221 135 4041 -4391 4678 3540 31 -953 |

| -1929 1394 -2979 -4580 3695 -4196 -3347 2736 |

| -1569 -94 3216 -4032 -4238 -3734 -4181 36 |

ZZ 8 ZZ 8

o8 : Matrix (-----) <--- (-----)

10009 10009

i9 :

I = typeASchubertIdeal({4,8},{{1,2,5,6},{1,2,5,6},{1,2,5,6},{1,2,5,6}},{F1,F2,F3},ZZ/10009);
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ZZ

o9 : Ideal of -----[x ..x , x ..x ]

10009 3,1 4,2 7,1 8,4

i10 : dim I

o10 = 0

i11 : degree I

o11 = 6

i12 : eliminant = smartFactor univariateEliminant(sum(gens ring(I)),I)

o12 = {{Z - 141, 1}, {Z - 466, 1}, {Z - 713, 1}, {Z - 1170, 1}, {Z - 2066, 1}, {Z - 3906, 1}}

o12 : List

i13 : cycletype = sort(flatten for fac in eliminant list(degree(fac#0)))

o13 = {1, 1, 1, 1, 1, 1}

o13 : List

i14 : F1 = random((ZZ/10009)^8,(ZZ/10009)^8)

o14 = | 1581 552 -2882 4485 -1381 4605 4978 -3424 |

| 3800 2474 -3307 -3423 -2775 -524 -2446 -3526 |

| -1892 748 4333 -1690 1865 3346 -3020 -3247 |

| 2201 476 4156 -3199 663 -4577 1040 -2275 |

| -4437 935 -2180 -3067 -2022 -2732 -859 2859 |

| -2688 -2709 -1498 2894 3293 1078 -288 1873 |

| 583 -3810 4132 2528 -1686 -4772 2189 2556 |

| 4133 -1368 -2615 732 2834 -2933 -1329 -1855 |

ZZ 8 ZZ 8

o14 : Matrix (-----) <--- (-----)

10009 10009

i15 : F2 = random((ZZ/10009)^8,(ZZ/10009)^8)
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o15 = | -1297 4666 3548 -3192 -1487 -3572 1204 2505 |

| -4931 3012 2371 1187 1787 4850 -3818 -116 |

| -1390 -1976 3919 3582 -3597 458 4784 -4154 |

| 2271 36 472 -2763 93 1456 -4452 1404 |

| -2165 -4532 4678 -3836 -3674 2267 -3159 -4749 |

| -2081 95 -2112 -4318 1993 -4144 2632 -2962 |

| -2824 -2831 3915 -1599 3271 -3335 -4127 -1883 |

| -1857 -4492 -647 -3964 4507 159 -3050 -4585 |

ZZ 8 ZZ 8

o15 : Matrix (-----) <--- (-----)

10009 10009

i16 : F3 = random((ZZ/10009)^8,(ZZ/10009)^8)

o16 = | -2820 -845 1149 -4871 -3936 1561 -4751 -2405 |

| 10 4929 -960 2738 2560 166 2201 3206 |

| -2973 2637 -337 -2025 4378 1548 444 -254 |

| 588 -1712 1263 -1901 -1807 4419 -3163 1360 |

| 4405 -983 -3934 -767 -3737 -3412 4099 646 |

| -2578 4764 933 -4600 -4186 2794 4480 56 |

| 4923 3711 589 -3667 4811 4070 3592 342 |

| 1576 -1568 359 1651 -3510 3175 -2423 3039 |

ZZ 8 ZZ 8

o16 : Matrix (-----) <--- (-----)

10009 10009

i17 : I = typeASchubertIdeal({4,8},{{1,2,5,6},{1,2,5,6},{1,2,5,6},{1,2,5,6}},{F1,F2,F3},ZZ/10009);

ZZ

o17 : Ideal of -----[x ..x , x ..x ]

10009 3,1 4,2 7,1 8,4

i18 : eliminant = smartFactor univariateEliminant(sum(gens ring(I)),I)

3 2 3 2

o18 = {{Z - 779Z - 802Z - 460, 1}, {Z - 1132Z + 4797Z - 2208, 1}}

o18 : List
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i19 : cycletype = sort(flatten for fac in eliminant list(degree(fac#0)))

o19 = {3, 3}

o19 : List

i20 : for i from 1 to 4 do(

print(frobeniusDegreeSix({{4,8},{{1,2,5,6},{1,2,5,6},{1,2,5,6},{1,2,5,6}}},10009,6,25)))

(false, false, {({1, 1, 2, 2}, 7), ({2, 4}, 10), ({3, 3}, 6), ({1, 1, 1, 1, 1, 1}, 2)})

(false, false, {({1, 1, 2, 2}, 11), ({3, 3}, 8), ({1, 1, 1, 1, 1, 1}, 1), ({2, 4}, 5)})

(false, false, {({1, 1, 2, 2}, 11), ({2, 4}, 6), ({1, 1, 1, 1, 1, 1}, 2), ({3, 3}, 6)})

(false, false, {({3, 3}, 12), ({1, 1, 2, 2}, 10), ({2, 4}, 3)})

In the above example, for the first choice of general flags we computed the identity permutation

as a Frobenius element of our Galois group, given by {1, 1, 1, 1, 1, 1}. We then chose another set

of general flags, and this time obtained a (3, 3)-cycle as a Frobenius element of our Galois group,

given by {3, 3}. Note that we do not know the exact element, just its cycle type. We then iterate

and compute four batches of 25 Frobenius elements each, obtaining a frequency table in each case

of cycle types observed. In each batch, the “false, false" in the output means that no (2, 3)-cycles

or 5-cycles were observed. This is because there are 6 solutions to Derksen’s problem, and so the

Galois group is a subgroup of S6, which is generated by any (2, 3)-cylce and 5-cycle, the obtaining

of which would have allowed us to instantly determine that the Galois group was full-symmetric.

However, no such cycles were found in our batches, but instead in the first batch of 25 Frobenius

elements, 7 (2, 2)-cycles were found, 10 (2, 4)-cycles were obtained, and the rest were 6 (3, 3)-

cycles and the identity twice. Looking at the other batches (all together, we computed here 102

Frobenius element cycle types), no other cycle types than those mentioned were observed, even

though there are many more cycle types in S6. All of this data indicates that the Galois group

for Derksen’s problem is enriched (though itself is not a proof), and in fact Derksen showed that

the Galois group is a copy of S4 in S6, and so has 24 < 720 elements. In Figure 4.1, it can be

observed that the only transitive subgroup of S6 with only the observed cycle types is labeled S4

(b), matching Derksen’s finding.
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Figure 4.1: Cycle Types of Transitive Subgroups of S6

4.5 Computation of Some Schubert Galois Groups and Future Work

All Galois groups for Schubert problems in Fl(a1, . . . , as;n) with n ≤ 5 are known to be

full-symmetric, but there is a known enriched Schubert problem in Fl(2, 4; 6) with 6 solutions

that has an isomorphic copy of S3 in S6 as its Galois group. At the same time, there is not a

full classification of enriched Galois groups in Fl(a1, . . . , as; 6), and so we have done large-scale

experimentation to gather data as to what groups might appear. Our design was as follows:

1. For each shape (a1, . . . , as; 6), we used Maple code to obtain the list of Schubert condi-

tions for every possible Schubert problem in Fl(a1, . . . , as; 6) with 250 solutions or fewer.

Our Maple code was refined to omit certain lists of Schubert conditions that give Schubert

problems with already understood enriched Galois groups, called triangular Schubert prob-

lems, since their groups are products or wreath products of groups already computed. With

this modification, there were still a total of 1, 812, 629 Schubert problems in the various

Fl(a1, . . . , as; 6) whose Galois groups we gathered data for.

2. After sufficient testing of running the Frobenius algorithm on various problems, we used

multivariate regression to estimate how long it would take to run Frobenius on each Schubert

problem based on past performance. As a result, we were able to create batches of Schubert
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problems, each of which we expected to take about 24 hours to run.

3. Using the Whistler cluster through the mathematics department at Texas A&M University,

we were able to run 32 batches at a time, compared to only 1 batch at a time on a personal

laptop computer. Performing this procedurally required a Bash script to interact with the

cluster, and a Python file that would run our Macaulay2 implementation of the Frobenius

algorithm multiple times per Schubert problem.

4. For each problem with d solutions, we ran the Frobenius algorithm on that problem to com-

pute up to 6d cycle types, searching for specific cycle types based on the number of solutions

that would force the Galois group to be full-symmetric. Based on the cycle types observed,

if the group was proven to be full-symmetric, the algorithm would move on to the next

problem. If the full 6d cycle types were computed and did not guarantee that the group was

full-symmetric, that problem as well as the cycle types computed with their frequencies were

stored in an output file.

Future work will entail analyzing the data from the large-scale computations, which took months to

perform. Each Schubert problem that wasn’t proven to be full-symmetric will be studied by com-

puting more Frobenius elements, and then using the frequency data to determine which transitive

subgroup of Sd we believe the group to be. At this point, a geometric argument will be required to

prove what the Galois group of the problem is, ideally also revealing what geometric obstructions

prohibit the group from being full-symmetric.

Additionally, there are many more Schubert problems to compute beyond those in the partial

flag varieties Fl(a1, . . . , as; 6). Already our Maple code (over months) has computed all Schubert

problems in Fl(a1, 7) = Gr(a1, 7) and Fl(a1, a2; 7), but beyond Grassmannians and two-step flag

varieties, determining all possible Schubert problems is computationally infeasible. As a result,

we will have to be more selective in computing data for Schubert Galois groups in the future.
Another avenue of research is to focus on Schubert problems in Type C. Sottile has written a

companion package to SchubertIdeals.m2 in Singular, and has used this package to compute cycle
types of Frobenius elements for Galois group computations for Schubert problems in Lagrangian
Grassmannians FlC(n, 2n). From the data he has computed (which can be found at
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https://franksottile.github.io/research/stories/LGalois/index.html

), he has provided some geometric arguments to prove that there are enriched Galois groups beyond

the iterated wreath products in TypeAGrassmannians. There is still much work to be done in Type

C, particularly beyond Lagrangian Grassmannians to other isotropic Type C Grassmannians and

partial flag varieties in general. At the same time, we will be comparing the speed and functionality

of SchubertIdeals.m2 and the companion Singular package, and will submit the results with the

packages to the Journal of Software for Algebra and Geometry.

As for TypesB andD (and the exceptional Lie types), nothing is known about Schubert Galois

groups. The goal will first be to write software that can find ideals of Schubert problems in this

setting, but already there will have to be adaptations in Type D due to the need for pfaffians in the

equations.

Already in the analysis of Sottile’s Type C computations, we have observed a limitation to the

method of computing Frobenius elements. If two transitive subgroups of Sd have the same order

and cycle types, with the same frequencies of those cycle types (but the subgroups are not the

same), then the Frobenius elements that we compute cannot be used to distinguish between the two.

Thus, more techniques are required, and in particular, there is hope that computing monodromy via

numerical homotopy methods to compute specific elements of the Galois group (not just the cycle

type) will suffice. For Type C this requires more difficult homotopies than those usually employed

in computing monodromy, but efforts have been made to overcome this.
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APPENDIX A

PROOF OF 27 LINES ON A CUBIC SURFACE

Even though the problem of 27 lines on a cubic surface is not inherently a Schubert prob-

lem (since cubic surfaces are not linear spaces), it can still be solved using the Chow ring of the

Grassmannian A(Gr(2, 4)). In general, the Chow ring A(Gr(k, V )) (equivalently the cohomology

ring) can be described by using the Chern classes of two natural vector bundles over Gr(k, V ):

0 → T → V → Q → 0, where T is the tautological bundle whose fiber over any H ∈ Gr(k, V )

is the subspace H ⊆ V itself, V = Gr(k, V ) × V is the trivial vector bundle of rank n, with V

as fiber, and Q is the quotient vector bundle of rank n − k, with V/H as fiber. The Chern classes

of the bundles T and Q are ci(T ) = (−1)iσ(1)i (where (1)i is the partition whose Young diagram

consists of a single column of length i), and ci(Q) = σi. The tautological sequence then gives the

presentation of the Chow ring as A(Gr(k, V )) = Z[c1(T ),...,ck(T ),c1(Q),...,cn−k(Q)]

(c(T )c(Q)−1)

For Gr(2, 4), the Chow ring A(Gr(2, 4)) has the presentation

A(Gr(2, 4)) = Z[σ1,σ1,1,σ2]
((1−σ1−σ1,1)(1+σ1+σ2)−1)

. Here (in dimension convention), σ1 is the class of Ω24, σ1,1

is the class of Ω23, and σ2 is the class of Ω14. As a graded abelian group, we have that:

• A0(Gr(2, 4)) = Z · 1 (the class of Ω34)

• A2(Gr(2, 4)) = Z · σ1

• A4(Gr(2, 4)) = Z · σ1,1
⊕

Z · σ2

• A6(Gr(2, 4)) = Z · σ2,1 (the class of Ω13)

• A8(Gr(2, 4)) = Z · σ2,2 (the class of Ω12)

Recall that Gr(2, 4) ∼= G(1, 3), and note that the equation of a line can be given as a section of

Γ(G(1, 3), T ∗). Since a cubic surface X ⊆ P3 is given as a generic homogeneous cubic polyno-

mial, it is also given as a generic section s ∈ Γ(G(1, 3), Sym3(T ∗)). A line L ⊆ P3 is a subvariety
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of X if and only if the section vanishes on [L] ∈ G(1, 3). Therefore, the Euler class of Sym3(T ∗)

can be integrated over G(1, 3) to get the number of points where the generic section vanishes on

G(1, 3). In order to get the Euler class, the total Chern class of T ∗ must be computed, which is

given as c(T ∗) = 1 + σ1 + σ1,1.

The splitting formula then reads as the formal equation c(T ∗) = (1+α)(1+β) = 1+α+β+α·β,

where c(L) = 1+α and c(M) = 1+ β for formal line bundles L,M. The splitting relation gives

the relations σ1 = α + β and σ1,1 = α · β.

Since Sym3(T ∗) can be viewed as the direct sum of formal line bundles

Sym3(T ∗) = L⊗3
⊕

(L⊗2
⊗

M)
⊕

(L
⊗

M⊗2)
⊕

M⊗3 whose total Chern class is c(Sym3(T ∗)) =

(1 + 3α)(1 + 2α + β)(1 + α + 2β)(1 + 3β), it follows that c4(Sym3(T ∗)) = (3α)(2α + β)(α +

2β)(3β) = 9αβ[2(α+ β)2 +αβ] = 9σ1,1(2σ
2
1 + σ1,1 = 27σ2,2. Above, we used the fact that in the

Chow ring, σ1,1 · σ2
1 = σ2,1 · σ1 = σ2,2 and σ2

1,1 = σ2,2.

Since σ2,2 is the top class (the class of a point), the integral is then
∫
G(1,3)

27σ2,2 = 27.
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APPENDIX B

PROOF THAT MONODROMY GROUPS AND GALOIS GROUPS ARE EQUIVALENT

Let F be a field. Let π : X → Z be a branched cover of irreducible varieties over F . As π

by definition is dominant, the function field F (Z) of Z embeds as a subfield of the function field

F (X) of X . This realizes F (X)/F (Z) as a finite extension of degree d, where d is the degree

of π. Let K be the normal closure of this extension, and so K/F (Z) is a Galois extension with

corresponding Galois group Galπ, also called the Galois group of the branched cover π. Note that

Galπ is a transitive subgroup of Sd that is well-defined up to conjugation.

There is also a geometric construction of Galπ. For s = 1, . . . , d, let Xs
Z be the s-fold iterated

fiber product of π : X → Z, so Xs
Z = X ×Z X ×Z · · · ×Z X (with s factors in the product). The

fiber of πs : Xs
Z → Z over a point z ∈ Z is the s-fold Cartesian product (π−1({z}))s of the fiber

of π over z.

The fiber product has many irreducible components when s > 1, possibly of different dimen-

sions. Let U ⊆ Z be the maximal dense open subset over which π is étale - fibers π−1({z}) for

z ∈ U are zero-dimensional reduced schemes of degree d. The complement of U is called the

branch locus B of π. The big diagonal of Xs
Z is the closed subscheme consisting of s-tuples with

a repeated coordinate. Let X(s)
Z be the closure in Xs

Z of the complement of the big diagonal in

(πs)−1(U). The fiber of X(s)
Z over a point z ∈ U(F ) consists of s-tuples of distinct points of the

fiber π−1({z})

When s = d, the symmetric group Sd acts on X(d)
Z , permuting each d-tuple. It permutes the

irreducible components and acts simply transitively on the fiber above a point z ∈ U(F ). Let

X ′ ⊆ X
(d)
Z be an irreducible component (they are all isomorphic when s = d).

We compare this to the construction of the splitting field of a single-variable polynomial. Re-

placingX and Z by appropriate affine open subsets, we may embedX as a hypersurface in Z×A1
t

with π : X → Z the projection. Writing F [X] and F [Z] for their coordinate rings, there is a monic
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irreducible polynomial f ∈ (F [Z])[t] of degree d such that F [X] = (F (Z))[t]/(f) = (F (Z))(α),

where α is the image of t in F [X]. If X ′ is an irreducible component of X(d)
Z , then F (X ′) =

(F (Z))(α1, . . . , αd), where αi ∈ F [X ′] is given by the composition of inclusion X ′ ⊆ X
(d)
Z , the

i-th coordinate projection X(d)
Z → X , and the function α. As i ̸= j =⇒ αi ̸= αj (X ′ does not

lie on the big diagonal), we see that α1, . . . , αd are the roots of f in F (X ′). Thus, F (X ′) is the

splitting field of f and hence is Galois over F (Z).

The monodromy group Monπ of the branched cover is the subgroup of Sd that preserves

X ′. Elements of Monπ are automorphisms of the extension F (X ′)/F (Z), so that Monπ ⊆

Gal((F (X ′)/F (Z)), the Galois group of F (X ′)/F (Z). Since Monπ acts simply transitively on

fibers of X ′ → Z above points in U(F ), its order is the degree of the map X ′ → Z, which

is the order of the field extension F (X ′)/F (Z). Hence, we arrive at the desired result that

Monπ = Gal((F (X ′)/F (Z)) = Galπ.
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